首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
安全科学   6篇
环保管理   1篇
综合类   1篇
  2023年   1篇
  2021年   1篇
  2020年   1篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  1996年   1篇
排序方式: 共有8条查询结果,搜索用时 31 毫秒
1
1.
Flammability limits of binary mixtures of dimethyl ether with five kinds of diluent gases were measured by ASHRAE method at room temperature. The five diluent gases are nitrogen, carbon dioxide, chlorodifluoromethane (HCFC-22), 1,1,1,2-tetrafluoroethane (HFC-134a) and 1,1,1,2,3,3,3-heptafluoropropane (HFC-227ea). The experimental results were correlated with the extended Le Chatelier's formula. It was found that the experimental results were well reproduced by the formula. In addition, flammability limits of binary mixtures of dimethyl ether with nitrogen and carbon dioxide were compared with the estimated values based on the adiabatic flame temperature method. The experimental results were found to be in satisfactory agreement with the estimated values.  相似文献   
2.
This study examines energetic and exergetic performances of display cases’ units used in market applications depending on different refrigerants. Besides CO2 emission potential of each refrigerant based on exergetic irreversibility obtained from analyses is calculated by the method of Total Equivalent Warming Impact (TEWI). In this study, 1 kW cooling capacity and vapor compression cooling cycle is taken as reference and refrigerants of R-22, R-134a, R-404A, and R-507 together with alternative refrigerant R-407C and R152a are examined separately. According to analyses, R-404A gas, used widely in market applications, has low performance with average COP 3.89 and average exergy efficiency 55.20%. R-152a gas has the best performance by the thermodynamics parameters including COP 4.49, exergy efficiency 63.79%, and 0.23 kW power consumption and emission parameter 14097.490 ton CO2/year. Although COP is used as a criterion to evaluate the systems, this study finally emphasizes the importance of exergy analysis and TEWI method which are important methods to determine irreversibility and emission potential of the systems.  相似文献   
3.
The possibility of ignition and flame propagation in accumulated difluoromethane (CH2F2, R32) was examined experimentally, simulating a situation in which a service operative uses a kerosene lighter for smoking. To simulate the situation where a kerosene cigarette lighter is used in accumulated R32, electrodes fixed in the windbreak of the lighter were remotely supplied with electricity to generate sparks of various durations but of similar energies to those of actual sparks generated by rubbing a flint to ignite the fuel in the lighter. We identified several cases of ignition and formation of an open flame in the windbreak of the lighter, and the flame propagated to the accumulated R32 when it was supplied with sufficient energy from the spark. Gas chromatographic analyses confirmed that the mixture in the windbreak of the kerosene lighter consisted mainly of vaporized fuel and air, with no R32. Therefore, even if the lighter is located in accumulated R32, an open flame can be generated in the windbreak of the kerosene cigarette lighter through ignition by the spark energy generated by friction between the flint and the flint wheel. Our results confirmed that there is a real possibility of ignition and flame propagation when a kerosene cigarette lighter is used in accumulated R32 under the leak rate conditions of the present experiment.  相似文献   
4.
1-Chloro-1,1-difluoroethane (R142b) can be used as the refrigerant, foaming agent and ORC (Organic Rankine Cycle) fluid. R142b was described as one of the interim substitutes in the Montreal Protocol (signed in 1987), and allowed to be used in developing countries until 2040. However the production and consumption of R142b were required to be frozen this year on the average data of 2009 and 2010 according to its latest amendment (signed in 2007). Binary alternatives R245fa/R142b, R227ea/R142b, R600a/R142b and R134a/R142b are possible substitutes in the initial transition period of frozen and phase-out R142b for the reason of pressure approach, which may be welcomed by the countries with wide use of R142b considering the technology and cost. This paper contributes to the flammability of these binary mixtures experimentally by using a self-made test rig built on the ground of Chinese National Standard. Not only the flammable limits of blends were studied, but also the related flame images were presented and analyzed. In addition, the flame suppression efficiencies of R245fa, R227ea and R134a have been compared and the lower flammable limits of R600a/R142b has been estimated and tested at different ratios. The presented work is beneficial to environmental protection.  相似文献   
5.
With the popularity of refrigerants in the process industries, the potential safety problems caused by the use of refrigerants have attracted worldwide attention as people have realized their inherent explosion characteristics of refrigerants. This paper studied the explosion characteristics of refrigerant 2, 3, 3, 3–tetrafluoropropene (R1234yf) at different concentrations and initial pressures based on a 20 L experimental apparatus. The experimental results illustrated the peak overpressure of R1234yf increased with the rise of initial pressure. At a constant ambient temperature of 25 °C, the maximum rate of pressure rise and deflagration index showed an N-shaped trend with the increase of the refrigerant concentration from 6.8% to 10%. The maximum rate of pressure rise and deflagration index increased first and then decreased with the increase of the refrigerant concentration at atmospheric pressure, while they presented an M-shaped trend at pressurization condition. The peak overpressure, the maximum rate of pressure rise, and deflagration index reached 0.742 MPa, 4.04 MPa s−1, and 1.1 MPa.m.s−1 with a refrigerant concentration of 7.6%, respectively, which were less than those of refrigerant propane and difluoromethane (R32) at the optimal concentration. Furthermore, R1234yf exhibited better safety performance compared with refrigerant R32 in the same flammability classification.  相似文献   
6.
The flammability characteristics of refrigerants are affected by environmental factors, making them prone to flammability and explosion accidents in cooling systems. In this paper, the flammability characteristics of R1234yf–air mixtures with N2 and CO2 were investigated comparatively at temperatures between 20 and 50 °C at 80% relative humidity. The lower and upper flammability limits of R1234yf were measured. The limiting oxygen concentration (LOC), critical flammable ratio (CFR), and critical flammable concentration (CFC) of the R1234yf–air mixtures with inert gases were investigated. The paper developed a linear formula between the flammability limit of R1234yf and the temperature. The changes in CFC with different temperatures were negligible for R1234yf. Furthermore, the mixed refrigerant had both non-flammability and the lowest vapor pressure when the CFR of the R1234yf/CO2 mixture was 2.9. The experimental results were used to propose a new prediction model to estimate the flammability limits of R1234yf. Finally, molecular simulation explained the effect of inert gases on the flammability of R1234yf from a microscopic point of view. The research aimed to provide valid evidence and data for preventing flammable and explosive refrigerant incidents.  相似文献   
7.
本文介绍了目前国内外正在研究开发或投入使用的环保型制冷方法.分析了各种环保型制冷方法的原理、性能及适用场合,指出了环保型制冷方法目前尚存在的问题及突破方向.  相似文献   
8.
The flammability of refrigerants is a major cause of refrigerant explosion incidents. Studying the explosion characteristics of refrigerants at different initial temperatures can provide significant benefits for solving the safety problems of refrigerants under actual working conditions. This paper studied the effects of the initial temperature and refrigerant concentration on the explosion characteristics of refrigerant 2, 3, 3, 3-tetrafluoropropene (R1234yf) at 0.1 MPa. The curves of explosion characteristics with different initial temperature revealed the same variation trend ranged from 25 °C to 115 °C. Specifically, as the refrigerant concentration was raised, the peak overpressure, the maximum rate of pressure rise, and laminar burning velocity increased initially and decreased afterwards, along with maximum values at the refrigerant concentration of 7.6%. When the refrigerant concentration was 7.6%, the peak overpressure declined exponentially with the initial temperature rise, while the maximum rate of pressure rise increased linearly. The laminar burning velocity calculated from the spherical expansion method indicated that the flame propagation was gradually accelerated by the increase of initial temperature, which coincided with the change of the maximum rate of pressure rise. Meanwhile, experiments and CHEMKIN simulation results demonstrated the effects of elevated temperature from 20 °C to 50 °C on the explosion limits of R1234yf. The lower explosion limit reduced and the upper explosion limit increased with rising initial temperature. In general, R1234yf exhibited moderate combustion and lower explosion risk, compared with traditional refrigerants.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号