首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
安全科学   6篇
  2019年   1篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2007年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.

Objective

To examine parental decisions about vehicles driven by teenagers and parental knowledge of vehicle safety.

Methods

About 300 parents were interviewed during spring 2006 in Minnesota, North Carolina, and Rhode Island while teenagers took their first on-road driving tests.

Results

Fewer than half of parents surveyed said teenagers would be the primary drivers of the chosen vehicles. Parents most often cited safety, existing family vehicle, and reliability when explaining the choices for their teenagers’ vehicles. About half of the vehicles intended for teenagers were small/mini/sports cars, pickups, or SUVs — vehicles considered less safe for teenagers than midsize/large cars or minivans. A large majority of vehicles were 2001 models or earlier. Vehicles purchased in anticipation of adding a new driver to the family were more likely to be the sizes/types considered less safe than vehicles already owned. Few parents insisted on side airbags or electronic stability control, despite strong evidence of their safety benefits. Even when asked to identify ideal vehicles for their teenagers to drive, about half of parents identified less safe vehicle sizes/types. Most parents knew that midsize/large vehicles are safer than small vehicles, and at least half of parents said SUVs and pickups are not safe for teenage drivers, citing instability.

Conclusions

The majority of parents understood some of the important criteria for choosing safe vehicles for their teenagers. However, parents actually selected many vehicles for teenagers that provide inferior crash protection.

Impact on industry

Vehicle safety varies substantially by vehicle size, type, and safety features. Many teenagers are driving inferior vehicles in terms of crashworthiness and crash avoidance.  相似文献   
2.
Objective: To provide an objective basis on which to evaluate the repeatability of vehicle crash test methods, a recently developed signal analysis method was used to evaluate correlation of sensor time history data between replicate vehicle crash tests. The goal of this study was to evaluate the repeatability of rollover crash tests performed with the Dynamic Rollover Test System (DRoTS) relative to other vehicle crash test methods.

Methods: Test data from DRoTS tests, deceleration rollover sled (DRS) tests, frontal crash tests, frontal offset crash tests, small overlap crash tests, small overlap impact (SOI) crash tests, and oblique crash tests were obtained from the literature and publicly available databases (the NHTSA vehicle database and the Insurance Institute for Highway Safety TechData) to examine crash test repeatability.

Results: Signal analysis of the DRoTS tests showed that force and deformation time histories had good to excellent repeatability, whereas vehicle kinematics showed only fair repeatability due to the vehicle mounting method for one pair of tests and slightly dissimilar mass properties (2.2%) in a second pair of tests. Relative to the DRS, the DRoTS tests showed very similar or higher levels of repeatability in nearly all vehicle kinematic data signals with the exception of global X′ (road direction of travel) velocity and displacement due to the functionality of the DRoTS fixture. Based on the average overall scoring metric of the dominant acceleration, DRoTS was found to be as repeatable as all other crash tests analyzed. Vertical force measures showed good repeatability and were on par with frontal crash barrier forces. Dynamic deformation measures showed good to excellent repeatability as opposed to poor repeatability seen in SOI and oblique deformation measures.

Conclusions: Using the signal analysis method as outlined in this article, the DRoTS was shown to have the same or better repeatability of crash test methods used in government regulatory and consumer evaluation test protocols.  相似文献   

3.
Objective: The goal of this study was to characterize the rollover crash and to evaluate the repeatability of the Dynamic Rollover Test System (DRoTS) in terms of initial roof-to-ground contact conditions, vehicle kinematics, road reaction forces, and vehicle deformation.

Methods: Four rollover crash tests were performed on 2 pairs of replicate vehicles (2 sedan tests and 2 compact multipurpose van [MPV] tests), instrumented with a custom inertial measurement unit to measure vehicle and global kinematics and string potentiometers to measure pillar deformation time histories. The road was instrumented with load cells to measure reaction loads and an optical encoder to measure road velocity. Laser scans of pre- and posttest vehicles were taken to provide detailed deformation maps.

Results: Initial conditions were found to be repeatable, with the largest difference seen in drop height of 20 mm; roll rate, roll angle, pitch angle, road velocity, drop velocity, mass, and moment of inertia were all 7% different or less. Vehicle kinematics (roll rate, road speed, roll and pitch angle, global Z′ acceleration, and global Z′ velocity) were similar throughout the impact; however, differences were seen in the sedan tests because of a vehicle fixation problem and differences were seen in the MPV tests due to an increase in reaction forces during leading side impact likely caused by disparities in roll angle (3° difference) and mass properties (2.2% in moment of inertia [MOI], 53.5 mm difference in center of gravity [CG] location).

Conclusions: Despite those issues, kinetic and deformation measures showed a high degree of repeatability, which is necessary for assessing injury risk in rollover because roof strength positively correlates with injury risk (Brumbelow 2009). Improvements of the test equipment and matching mass properties will ensure highly repeatable initial conditions, vehicle kinematics, kinetics, and deformations.  相似文献   

4.
Objective: The Insurance Institute for Highway Safety (IIHS) introduced its side impact consumer information test program in 2003. Since that time, side airbags and structural improvements have been implemented across the fleet and the proportion of good ratings has increased to 93% of 2012–2014 model year vehicles. Research has shown that drivers of good-rated vehicles are 70% less likely to die in a left-side crash than drivers of poor-rated vehicles. Despite these improvements, side impact fatalities accounted for about one quarter of passenger vehicle occupant fatalities in 2012. This study is a detailed analysis of real-world cases with serious injury resulting from side crashes of vehicles with good ratings in the IIHS side impact test.

Methods: NASS-CDS and Crash Injury Research and Engineering Network (CIREN) were queried for occupants of good-rated vehicles who sustained an Abbreviated Injury Scale (AIS) ≥ 3 injury in a side-impact crash. The resulting 110 cases were categorized by impact configuration and other factors that contributed to injury. Patterns of impact configuration, restraint performance, and occupant injury were identified and discussed in the context of potential upgrades to the current IIHS side impact test.

Results: Three quarters of the injured occupants were involved in near-side impacts. For these occupants, the most common factors contributing to injury were crash severities greater than the IIHS test, inadequate side-airbag performance, and lack of side-airbag coverage for the injured body region. In the cases where an airbag was present but did not prevent the injury, occupants were often exposed to loading centered farther forward on the vehicle than in the IIHS test. Around 40% of the far-side occupants were injured from contact with the struck-side interior structure, and almost all of these cases were more severe than the IIHS test. The remaining far-side occupants were mostly elderly and sustained injury from the center console, instrument panel, or seat belt. In addition, many far-side occupants were likely out of position due to events preceding the side impact and/or being unbelted.

Conclusion: Individual changes to the IIHS side impact test have the potential to reduce the number of serious injuries in real-world crashes. These include impacting the vehicle farther forward (relevant to 28% of all cases studied), greater test severity (17%), the inclusion of far-side occupants (9%), and more restrictive injury criteria (9%). Combinations of these changes could be more effective.  相似文献   
5.
Abstract

Objective: When 2 vehicles of different sizes collide, the occupants of the smaller vehicle are more likely to be injured than the occupants of the larger vehicle. The larger vehicle is both more protective of its own occupants and more aggressive toward occupants of the other vehicle. However, larger, heavier vehicles tend to be designed in ways that amplify their incompatibility with smaller, lighter vehicles (by having a higher ride height, for example). A 2012 study by the Insurance Institute for Highway Safety (IIHS) concluded that fatalities caused by design incompatibility have decreased in recent years. The current study was conducted to update the 2012 IIHS analysis and to explore trends in vehicle incompatibility over time.

Methods: Analyses examined deaths in crashes involving 1- to 4-year-old passenger vehicles from 1989 to 2016 collected from the Fatality Analysis Reporting System (FARS). Trends in driver risk were examined by comparing driver death rates per million registered vehicle years across vehicle type and size. Trends in aggressivity were examined by comparing partner driver death rates across vehicle type and size.

Results: Cars and SUVs have continued their trend toward reduced incompatibility. In 1989–1992, SUVs were 132% more likely to kill the driver in a partner car compared with when a car crashed with another car. By 2013–2016, this value had dropped to 28%. Pickups and cars remain just as incompatible in 2013–2016 as they were in 1989–1992, however (159% vs. 158%). Remaining pickup incompatibility may be largely due to excess curb weight rather than to shape or design features, because light pickups were just 23% more likely to kill the driver in a partner car compared with when a car crashed with another car.

Conclusions: The trend toward reduced fleet incompatibility has continued in the latest crash data, particularly for cars and SUVs. Although pickup–car incompatibility has also decreased over time, pickups remain disproportionately aggressive toward other vehicles, possibly due to their greater average curb weight. Reducing the weight of some of the heaviest vehicles and making crash avoidance technology fitment more widespread may be promising means to reduce remaining fleet incompatibility. Identifying the source of remaining incompatibility will be important for safety improvements going forward.  相似文献   
6.
Objective: The goal of this study is to evaluate the crash performance of guardrail end terminals in real-world crashes. Guardrail end terminals are installed at the ends of guardrail systems to prevent the rail from spearing through the car in an end-on collision. Recently, there has been a great deal of controversy as to the safety of certain widely used end terminal designs, partly because there is surprisingly little real-world crash data for end terminals. Most existing studies of end terminal crashes used data from prior to the mid-1990s. Since then, there have been large improvements to vehicle crashworthiness and seat belt usage rates, as well as new roadside safety hardware compliant with National Cooperative Highway Research Program (NCHRP) Report 350, “Recommended Procedures for the Safety Performance Evaluation of Highway Features.” Additionally, most existing studies of injury in end terminal crashes do not account for factors such as the occurrence of rollover. This analysis uses more recent crash data that represent post-1990s vehicle fleet changes and account for a number of factors that may affect driver injury outcome and rollover occurrence.

Methods: Passenger vehicle crashes coded as involving guardrail end terminals were identified in the set of police-reported crashes in Michigan in 2011 and 2012. End terminal performance was expected to be a function of end terminal system design. State crash databases generally do not identify specific end terminal systems. In this study, the coded crash location was used to obtain photographs of the crash site prior to the crash from Google Street View. These site photographs were manually inspected to identify the particular end terminal system involved in the crash. Multiple logistic regression was used to test for significant differences in the odds of driver injury and rollover between different terminal types while accounting for other factors.

Results: A total of 1,001 end terminal crashes from the 2011–2012 Michigan State crash data were manually inspected to identify the terminal that had been struck. Four hundred fifty-one crashes were found to be suitable for analysis. Serious to fatal driver injury occurred in 3.8% of end terminal crashes, moderate to fatal driver injury occurred in 11.8%, and 72.3% involved property damage only. No significant difference in moderate to fatal driver injury odds was observed between NCHRP 350 compliant end terminals and noncompliant terminals. Car drivers showed odds of moderate to fatal injury 3.6 times greater than LTV drivers in end terminal crashes. Rollover occurrence was not significantly associated with end terminal type.

Conclusions: Car drivers have greater potential for injury in end terminal crashes than light truck/van/sport utility vehicle drivers. End terminal designs compliant with NCHRP 350 did not appear to carry different odds of moderate driver injury than noncompliant end terminals. The findings account for driver seat belt use, rollover occurrence, terminal orientation (leading/trailing), control loss, and the number of impact events. Rollover and nonuse of seat belts carried much larger increases in injury potential than end terminal type. Rollover did not appear to be associated with NCHRP 350 compliance.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号