首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
  国内免费   12篇
安全科学   3篇
环保管理   1篇
综合类   13篇
基础理论   3篇
污染及防治   3篇
  2022年   1篇
  2021年   1篇
  2018年   1篇
  2017年   2篇
  2016年   2篇
  2015年   4篇
  2014年   1篇
  2012年   2篇
  2011年   3篇
  2010年   1篇
  2008年   1篇
  2006年   3篇
  2002年   1篇
排序方式: 共有23条查询结果,搜索用时 31 毫秒
1.
介绍了电脉冲对粉体成形的原理。从电迁移和电脉冲作用下的非平衡相变讨论了粉体成形的机理 ,为块状纳米材料的制备提供一个新思路  相似文献   
2.
Probabilistic material flow analysis and graph theory were combined to calculate predicted environmental concentrations (PECs) of engineered nanomaterials (ENMs) in Swiss rivers: 543 river sections were used to assess the geographical variability of nano-TiO2, nano-ZnO and nano-Ag, and flow measurements over a 20-year period at 21 locations served to evaluate temporal variation. A conservative scenario assuming no ENM removal and an optimistic scenario covering complete ENM transformation/deposition were considered. ENM concentrations varied by a factor 5 due to uncertain ENM emissions (15%-85% quantiles of ENM emissions) and up to a factor of 10 due to temporal river flow variations (15%-85% quantiles of flow). The results indicate highly variable local PECs and a location- and time-dependent risk evaluation. Nano-TiO2 median PECs ranged from 11 to 1′623 ng L−1 (conservative scenario) and from 2 to 1′618 ng L−1 (optimistic scenario). The equivalent values for nano-ZnO and nano-Ag were by factors of 14 and 240 smaller.  相似文献   
3.
采用电子自旋共振光谱(EPR)技术,分析腐殖酸在光照下对4种典型碳纳米材料诱导产生单线态氧(~1O_2)和羟基自由基(·OH)的影响。基于密度泛函理论计算4种典型碳纳米材料的前线轨道能,比较了它们分别经能量转移诱导产生~1O_2的能力以及经电子传递诱导产生·OH的能力。结果显示,4种不同形状的碳纳米材料(富勒烯、单壁碳纳米管、多壁碳纳米管以及石墨烯)悬浮液在紫外光照下均无~1O_2和·OH产生。与腐殖酸共同存在下,4种碳纳米材料均显著诱导~1O_2的产生,且富勒烯和石墨烯还能光致生成·OH。协同产生~1_O2的能力大小为:单壁碳纳米管富勒烯多壁碳纳米管石墨烯,协同产生·OH的能力大小为:石墨烯富勒烯。~1O_2的产生能力与碳纳米材料的能隙大小和颗粒聚集程度有关,而诱导产生·OH的能力主要取决于化学硬度。总之,我们的研究表明腐殖酸与碳纳米颗粒可协同产生活性氧物种。  相似文献   
4.
Pollution of antibiotics, a type of emerging contaminant, has become an issue of concern, due to their overuse in human and veterinary application, persistence in environment and great potential risk to human and animal health even at trace level. In this work, a novel adsorbent, Fe3O4 incorporated polyacrylonitrile nanofiber mat (Fe-NFM), was successfully fabricated via electrospinning and solvothermal method, targeting to remove tetracycline (TC), a typical class of antibiotics, from aqueous solution. Field emission scanning electron microscopy and X-ray diffraction spectroscopy were used to characterize the surface morphology and crystal structure of the Fe-NFM, and demonstrated that Fe-NFM was composed of continuous, randomly distributed uniform nanofibers with surface coating of Fe3O4 nanoparticles. A series of adsorption experiments were carried out to evaluate the removal efficiency of TC by the Fe-NFM. The pseudo-second-order kinetics model fitted better with the experimental data. The highest adsorption capacity was observed at initial solution pH 4 while relative high adsorption performance was obtained from initial solution pH 4 to 10. The adsorption of TC on Fe-NFM was a combination effect of both electrostatic interaction and complexation between TC and Fe-NFM. Freundlich isotherm model could better describe the adsorption isotherm. The maximum adsorption capacity calculated from Langmuir isotherm model was 315.31 mg/g. Compared to conventional nanoparticle adsorbents which have difficulties in downstream separation, the novel nanofiber mat can be simply installed as a modular compartment and easily separated from the aqueous medium, promising its huge potential in drinking and wastewater treatment for micro-pollutant removal.  相似文献   
5.
纳米TiO2因其特殊的理化特性以及低廉生产成本,被广泛地应用于造纸、化妆品、纺织、农业生产和环境保护等行业.随着nTiO2被广泛使用和大量排放,其健康风险和生态毒理效应逐渐引起人们的关注.本论文综述了近些年的研究进展,探讨了nTiO2的健康风险和生态毒理效应,总结了nTiO2的生物毒性机制,呼吁加强相关研究和环境保护,为nTiO2的安全使用做出贡献.  相似文献   
6.
Coagulation followed by sedimentation, as a conventional technique in the water treatment plant, can be the first line of defense against exposures of carbon nanotubes (CNTs) to aquatic organisms and human beings, which has been rarely documented. This study investigated the removal of dispersant-stabilized CNT suspensions by poly aluminum chloride (PACl) and KAl(SO4)2. 12H2O (alum), with a focus on the effects of dispersant type, coagulant type and dosage. PACl performed better than alum in the removal of tannic acid-, humic acid-, and sodium dodecyl benzenesulfonate-stabilized CNTs, but worse for polyethylene glycol octylphenyl ether (TX100)-stabilized CNTs. Neither coagulant could effectively precipitate cetyltrimethyl ammonium bromide-stabilized CNTs. The removal by PACl first increased up to a plateau and then decreased with the continued increase of coagulant dosage. However, the removal rates leveled off but did not decrease after achieving their highest level with the continued addition of alum. The coagulation and flocculation of the CNT suspensions by PACl could be regulated mainly by the mechanism of adsorption charge neutralization, whereas the coagulation by alum mainly involved electrical double-layer compression.  相似文献   
7.
纳米材料的欧盟定义及安全性评估   总被引:1,自引:0,他引:1  
随着纳米技术的不断发展,纳米材料在越来越多的场所得到应用,这就对个体防护领域提出了新的挑战。本文简要介绍纳米材料的欧盟定义,国际标准化组织(ISO)、美国国家标准与技术研究院(NIST)纳米材料安全性评估相关标准及研究,国内职业场所纳米技术健康和安全标准的制定、重要纳米材料的生物效应与安全性评价研究等基础性工作,以期为纳米材料的监管和安全性评估提供参考。  相似文献   
8.
纳米技术及材料在环境保护中的应用   总被引:3,自引:0,他引:3  
概述了纳米技术及材料在环境保护中的应用情况,特别是在污水处理与空气净化方面,认为纳米技术及材料的应用将会给环境科学带来突破性进展,为彻底改善环境和从源头上控制新的污染源的产生创造条件,表明利用纳米技术及纳米材料解决环境污染问题将成为未来环境保护发展的必然趋势。  相似文献   
9.
胡霞林  刘景富 《环境化学》2011,30(1):252-262
自由溶解态浓度可用于评价污染物的生物有效性,评估污染物的环境风险.本文介绍了微耗损固相微萃取(nd-SPME)技术测定自由溶解态浓度的原理、测定条件和基质干扰等影响因素,并着重总结归纳了nd-SPME技术在在环境基质和生物基质中有机污染物自由溶解态浓度测定中的应用.  相似文献   
10.
Pollution of antibiotics, a type of emerging contaminant, has become an issue of concern, due to their overuse in human and veterinary application, persistence in environment and great potential risk to human and animal health even at trace level. In this work, a novel adsorbent, Fe3O4 incorporated polyacrylonitrile nanofiber mat (Fe-NFM), was successfully fabricated via electrospinning and solvothermal method, targeting to remove tetracycline (TC), a typical class of antibiotics, from aqueous solution. Field emission scanning electron microscopy and X-ray diffraction spectroscopy were used to characterize the surface morphology and crystal structure of the Fe-NFM, and demonstrated that Fe-NFM was composed of continuous, randomly distributed uniform nanofibers with surface coating of Fe3O4 nanoparticles. A series of adsorption experiments were carried out to evaluate the removal efficiency of TC by the Fe-NFM. The pseudo-second-order kinetics model fitted better with the experimental data. The highest adsorption capacity was observed at initial solution pH 4 while relative high adsorption performance was obtained from initial solution pH 4 to 10. The adsorption of TC on Fe-NFM was a combination effect of both electrostatic interaction and complexation between TC and Fe-NFM. Freundlich isotherm model could better describe the adsorption isotherm. The maximum adsorption capacity calculated from Langmuir isotherm model was 315.31 mg/g. Compared to conventional nanoparticle adsorbents which have difficulties in downstream separation, the novel nanofiber mat can be simply installed as a modular compartment and easily separated from the aqueous medium, promising its huge potential in drinking and wastewater treatment for micro-pollutant removal.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号