首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
废物处理   2篇
  2008年   1篇
  2007年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
Interest in renewable biofuel sources has intensified in recent years, leading to greatly increased production of ethanol and its primary coproduct, Distillers Dried Grain with Solubles (DDGS). Consequently, the development of new outlets for DDGS has become crucial to maintaining the economic viability of the industry. In light of these developments, this preliminary study aimed to determine the suitability of DDGS for use as a biofiller in low-cost composites that could be produced by rapid prototyping applications. The effects of DDGS content, particle size, curing temperature, and compression on resulting properties, such as flexural strength, modulus of elasticity, water activity, and color were evaluated for two adhesive bases. The composites formed with phenolic resin glue were found to be greatly superior to glue in terms of mechanical strength and durability: resin-based composites had maximum fiber stresses of 150–380 kPa, while glue composites had values between 6 kPa and 35 kPa; additionally, glue composites experienced relatively rapid microbial growth. In the resin composites, both decreased particle size and increased compression resulted in increased mechanical strength, while a moderate DDGS content was found to increase flexural strength but decrease Young’s modulus. These results indicate that DDGS has the potential to be used in resin glue-based composites to both improve flexural strength and improve potential biodegradability.  相似文献   
2.
With the rapid growth in the ethanol fuel industry in recent years, considerable research is being devoted to optimizing the use of processing coproducts, such as distillers dried grains with solubles (DDGS), in livestock diets. Because these residues contain high fiber levels, they may be amendable to incorporation into bio-based composites. Thus, the goal of this study was to demonstrate the viability of using corn-based DDGS as a biofiller with phenolic resin, in order to produce a novel biomaterial. DDGS was blended with phenolic resin at 0, 10, 25, 50, 75, and 90%, by weight, and then compression molded at 51 MPa (3.7 tons/in2) and 174 °C (345°F). Molded specimens were then tested for tensile strength. Tensile yield strengths ranged from 32 MPa (4,700 psi) to 7.6 MPa (1,100 psi), while the engineering strain ranged from 0.6% to 1.25%. Results indicate that DDGS concentrations between 25% and 50% retained sufficient mechanical strength and thus represent reasonable inclusion values. Additionally, data were similar to those from other studies that have investigated biofillers. Follow-up studies should quantify the effects of altering molding parameters, including molding pressure, temperature, and time, as well as pretreatment of the DDGS. Additionally, strength of the DDGS composites should be optimized through the use of coupling agents or other additives. Mention of a trade name, proprietary product, or specific equipment does not constitute a guarantee or warranty by the United States Department of Agriculture and does not imply approval of a product to the exclusion of others that may be suitable.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号