首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   103篇
  免费   2篇
  国内免费   14篇
安全科学   2篇
废物处理   33篇
环保管理   22篇
综合类   27篇
基础理论   8篇
污染及防治   23篇
评价与监测   3篇
社会与环境   1篇
  2023年   3篇
  2021年   5篇
  2020年   2篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2015年   7篇
  2014年   22篇
  2013年   12篇
  2012年   4篇
  2011年   7篇
  2009年   7篇
  2008年   5篇
  2007年   6篇
  2006年   1篇
  2005年   4篇
  2004年   3篇
  2003年   5篇
  2002年   3篇
  2001年   4篇
  2000年   6篇
  1999年   3篇
  1998年   2篇
  1996年   1篇
  1995年   1篇
  1993年   1篇
  1991年   1篇
排序方式: 共有119条查询结果,搜索用时 709 毫秒
1.
城市生活垃圾综合处理系统的选择   总被引:15,自引:0,他引:15  
以上海城市生活垃圾处置为对象,利用层次分析方法,选择了分选回收+堆肥+卫生填埋的综合处置系统,并且确定了堆肥方式应首先考虑仓式静态好氧堆肥。经过运行费比较,所选择的综合处置系统比现行的处置系统具有明显的优势。  相似文献   
2.
3.
针对间歇式堆肥反应器处理效率低、不便移动、单次投加所需物料量大等不足,以及为更有效地处理分散型人粪便,使人粪便资源化,开发了梨形筒式好氧堆肥反应器。在获得该反应器的最佳通风与搅拌频率分别为3.0 L/min,5 min/h以及最佳m(粪便)︰m(锯末)为1︰2.5的条件下进行连续投加人粪便好氧堆肥。在不接种微生物的30 d堆制过程中,升-降温周期为36 h,平均温度为51.44℃,第15天时COD降解率达到63.99%并趋于稳定,TN损失率第17天时达到56.68%,GI于第21天时达到106.25%,堆肥完全腐熟,稳定期处理效率为23.81 g/(L·d)。接种土著菌种时,升-降温周期缩短至24 h,平均温度为53.96℃,COD降解率8 d可达65.28%,TN 损失率仅为25.75%,GI于第8天达到108.22%,稳定期处理效率可达35.71 g/(L·d),比不接种时提高1.5倍,同时节约能耗50%。  相似文献   
4.
Binding of two model polycyclic aromatic hydrocarbons (PAHs), phenanthrene and pyrene, by humic acids (HAs) isolated from an organic substrate at different stages of composting and a soil was investigated using a batch fluorescence quenching method and the modified Freundlich model. With respect to soil HA, the organic substrate HA fractions were characterized by larger binding affinities for both phenanthrene and pyrene. Further, isotherm deviation from linearity was larger for soil HA than for organic substrate HAs, indicating a larger heterogeneity of binding sites in the former. The composting process decreased the binding affinity and increased the heterogeneity of binding sites of HAs. The changes undergone by the HA fraction during composting may be expected to contribute to facilitate microbial accessibility to PAHs. The results obtained also suggest that bioremediation of PAH-contaminated soils with matured compost, rather than with fresh organic amendments, may result in faster and more effective cleanup.  相似文献   
5.
Although composting has been successfully used at pilot scale to manage waste algae removed from eutrophied water environments and the compost product applied as a fertiliser, clear guidelines are not available for full scale algae composting. The review reports on the application of composting to stabilize waste algae, which to date has mainly been macro-algae, and identifies the peculiarities of algae as a composting feedstock, these being: relatively low carbon to nitrogen (C/N) ratio, which can result in nitrogen loss as NH3 and even N2O; high moisture content and low porosity, which together make aeration challenging; potentially high salinity, which can have adverse consequence for composting; and potentially have high metals and toxin content, which can affect application of the product as a fertiliser. To overcome the challenges that these peculiarities impose co-compost materials can be employed.  相似文献   
6.
Xi BD  He XS  Wei ZM  Jiang YH  Li MX  Li D  Li Y  Dang QL 《Chemosphere》2012,88(6):744-750
Four types of inoculation methods were studied during the composting of municipal solid wastes and dry grass (MSWG). The methods included a control group as well as initial-stage, two-stage, and multi-stage inoculations. Fulvic acids were extracted from the composting materials and characterized by spectroscopic techniques. The results showed that inoculation of microbes in MSWG enhanced the biodegradation of aliphatics, proteins, and polysaccharides. The inoculation also increased the molecular weight, humic- and fulvic-like compound content, as well as humification degree of the composting products. The inoculation of microbes in MSWG significantly improved composting process and efficiency. The improvement efficiency was in the order of initial-stage < two-stage < multi-stage inoculations. Inoculation of microbes based on composting organic matter composition and temperature enhanced composting efficiency.  相似文献   
7.
Abstract

Recycling of organic residues by composting is becoming an acceptable practice in our society. Co-composting dewatered paper mill sludge (PMS) and hardwood sawdust, two readily available materials in Canada, was investigated using uncontrolled and controlled in-vessel processes. The composted materials were characterized for total C and N, water-soluble, acid-hydrolyzable, and non-hydrolyzable N, extractable lipids, and by Fourier Transform Infrared (FT-IR) spectrophotometry. In the controlled scale process, the loss of organic matter was approximately 65% higher than in the uncontrolled process. After undergoing initial fluctuations in N fractions during the first two days of composting, by the end of the process, concentrations of water-soluble N decreased while those of acid-hydrolyzable and nonhydrolyzable N increased in the controlled process, whereas in the uncontrolled process, water-soluble N increased, but N in the other two fractions decreased continuously, indicating that the biochemical transformations of organic matter were not completed. Data on extractable lipids and FT-IR spectra suggest that the compost produced from the controlled process was bio-stable after 14 days, while the uncontrolled process was not stabilized after 18 days. In addition, FT-IR data suggest the biological activity during composting centered mainly on the degradation of aliphatic structures while aromatic structures were preserved. The co-composting of the PMS and hardwood sawdust can be successfully achieved if aeration, moisture, and bio-available C/N ratios are optimized to reduce losses of N.  相似文献   
8.
Bacterial diversity of full scale rotary drum composter from biodegradable organic waste samples were analyzed through two different approaches, i.e., Culture dependent and independent techniques. Culture-dependent enumerations for indigenous population of bacterial isolates mainly total heterotrophic bacteria (Bacillus species, Pseudomonas species and Enterobacter species), Fecal Coliforms, Fecal Streptococci, Escherichia coli, Salmonella species and Shigella species showed reduction during the composting period. On the other hand, Culture-independent method using PCR amplification of specific 16S rRNA sequences identified the presence of Acinetobacter species, Actinobacteria species, Bacillus species, Clostridium species, Hydrogenophaga species, Butyrivibrio species, Pedobacter species, Empedobactor species and Flavobacterium species by sequences clustering in the phylogenetic tree. Furthermore, correlating physico-chemical analysis of samples with bacterial diversity revealed the bacterial communities have undergone changes, possibly linked to the variations in temperature and availability of new metabolic substrates while decomposing organics at different stages of composting.  相似文献   
9.
The Biopotentiality Index is a landscape ecology indicator, which can be used to estimate the latent energy of a given land and to assess the environmental impacts due to the loss of naturalness on a landscape scale. This indicator has been applied to estimate the effectiveness of the measures put in place to provide an environmental compensation for the revamping of a composting plant. These compensation measures are represented by a green belt with a minimum width of 25 m all around the plant, representing both a windbreak and a buffer zone, and by two wide wooded zones acting as core natural areas.This case-study shows that the compensation index could be used as a key tool in order to negotiate the acceptance of waste treatment plant with the population.  相似文献   
10.
Co-composting of poultry manure and rubber wood sawdust was performed with the ratio of 2:1(V/V) for a period of 60 days. An investigation was carried out to study the extracellular enzymatic activities and structural degradation utilizing Fourier transform infrared spectroscopy(FT-IR), thermogravimetry and differential thermal analysis(TG/DTA)and scanning electron microscopy(SEM). The microbial succession was also determined by using denaturing gel gradient electrophoresis(DGGE). The compost was able to reach its highest temperature of 71°C at day 3 and stabilized between 30 and 40°C for 8 weeks.CMCase, FPase and β-glucosidase acted synergistically in order to degrade the cellulosic substrate. The xylanase activities increased gradually during the composting and reached the peak value of 11.637 U/g on day 35, followed by a sharp decline. Both Li P and Mn P activities reached their peak values on day 35 with 0.431 and 0.132 U/g respectively. The FT-IR spectra revealed an increase in aromaticity and a decrease in aliphatic compounds such as carbohydrates as decomposition proceeded. TGA/DTG data exhibited significant changes in weight loss in compost samples, indicating degradation of organic matter. SEM micrographs showed higher amounts of parenchyma exposed on the surface of rubber wood sawdust at day 60, showing significant degradation. DGGE and 16 S r DNA analyses showed that Burkholderia sp., Pandoraea sp., and Pseudomonas sp. were present throughout the composting process. Ornithinibacillus sp. and Castellaniella ginsengisoli were only found in the initial stage of the composting, while different strains of Burkholderia sp. also occurred in the later stage of composting.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号