首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
  国内免费   1篇
废物处理   2篇
环保管理   1篇
综合类   1篇
基础理论   2篇
污染及防治   2篇
  2023年   1篇
  2021年   1篇
  2017年   1篇
  2014年   2篇
  2012年   1篇
  2010年   1篇
  1991年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
Vermitechnology is gaining recognition as an environmental friendly waste management strategy. Its successful implementation requires that the key operational parameters like earthworm stocking density be established for each target waste/waste mixture. One target waste mixture in South Africa is waste paper mixed with cow dung and rock phosphate (RP) for P enrichment. This study sought to establish optimal Eisenia fetida stocking density for maximum P release and rapid bioconversion of RP enriched cow dung–paper waste mixtures. E. fetida stocking densities of 0, 7.5, 12.5, 17.5 and 22.5 g-worms kg?1 dry weight of cow dung–waste paper mixtures were evaluated. The stocking density of 12.5 g-worms kg?1 resulted in the highest earthworm growth rate and humification of the RP enriched waste mixture as reflected by a C:N ratio of <12 and a humic acid/fulvic acid ratio of >1.9 in final vermicomposts. A germination test revealed that the resultant vermicompost had no inhibitory effect on the germination of tomato, carrot, and radish. Extractable P increased with stocking density up to 22.5 g-worm kg?1 feedstock suggesting that for maximum P release from RP enriched wastes a high stocking density should be considered.  相似文献   
2.
In order to understand the transport and humification processes of dissolved organic matter(DOM) within sediments of a semi-arid floodplain at Rifle,Colorado,fluorescence excitation–emission matrix(EEM) spectroscopy,humification index(HIX) and specific UV absorbance(SUVA) at 254 nm were applied for characterizing depth and seasonal variations of DOM composition.Results revealed that late spring snowmelt leached relatively fresh DOM from plant residue and soil organic matter down into the deeper vadose zone(VZ).More humified DOM is preferentially adsorbed by upper VZ sediments,while non-or lesshumified DOM was transported into the deeper VZ.Interestingly,DOM at all depths undergoes rapid biological humification process evidenced by the products of microbial by-product-like(i.e.,tyrosine-like and tryptophan-like) matter in late spring and early summer,particularly in the deeper VZ,resulting in more humified DOM(e.g.,fulvic-acid-like and humic-acid-like substances) at the end of year.This indicates that DOM transport is dominated by spring snowmelt,and DOM humification is controlled by microbial degradation,with seasonal variations.It is expected that these relatively simple spectroscopic measurements(e.g.,EEM spectroscopy,HIX and SUVA) applied to depth-and temporally-distributed pore-water samples can provide useful insights into transport and humification of DOM in other subsurface environments as well.  相似文献   
3.
Seven mixtures from four organic residues—an aerobic sewage sludge, a city refuse, a peat residue, and a grape debris—were composted, and the changes undergone by their different carbon fractions during their composting and maturation were studied. In most cases a decrease in carbon fractions during the composting and maturation processes was observed. The extractable carbon, however, increased during maturation. Organic matter mineralization was greater in the composts with city refuse than in those with sewage sludge. The samples with peat residue showed the lowest decreases in carbon fractions. During maturation, an increase of humiclike fraction was observed, which was reflected by a decrease in the soluble carbon-precipitated carbon ratio at pH 2. Water-soluble carbon was the carbon fraction most easily degradable by microorganisms, and its amount correlated significantly with composting time in all the samples.  相似文献   
4.
● Effect of composting approaches on dissolved organic matter (DOM). ● Effect of composting conditions on the properties of DOM. ● Character indexes of DOM varied in composting. ● The size, hydrophobicity, humification, and electron transfer capacity increased. ● The hydrophilicity, protein-like materials, and aliphatic components reduced. As the most motive organic fraction in composting, dissolved organic matter (DOM) can contribute to the transfer and dispersal of pollutants and facilitate the global carbon cycle in aquatic ecosystems. However, it is still unclear how composting approaches and conditions influence the properties of compost-derived DOM. Further details on the shift of DOM character indexes are required. In this study, the change in properties of compost-derived DOM at different composting approaches and the effect of composting conditions on the DOM characteristics are summarized. Thereafter, the change in DOM character indexes’ in composting was comprehensively reviewed. Along with composting, the elements and spectral properties (chromophoric DOM (CDOM) and fluorescent DOM (FDOM)) were altered, size and hydrophobicity increased, and aromatic-C and electron transfer capacity were promoted. Finally, some prospects to improve this study were put forward. This paper should facilitate the people who have an interest in tracing the fate of DOM in composting.  相似文献   
5.
The alteration of physico-chemical properties of sediment organic matter (SOM) incubated under current-harvesting conditions as well as no-current producing conditions over 120 days using sediment microbial fuel cell systems was examined. The SOM was microbially oxidized under anaerobic conditions with an electrode serving as a terminal electron acceptor. It was found that SOM around the electrochemically-active electrodes became more humified, aromatic, and polydispersed, and had a higher average molecular weight, along with its partial degradation and electricity generation compared to that for the original sediment. These changes in SOM properties were analogous to those commonly observed in the early stages of the SOM diagenetic process (i.e. humification). Such a humification-like process was evidently more stimulated when electrical current was produced than no-current condition. These new findings associated with microbially-catalyzed electricity generation may present a potential for the energy-efficient remediation, monitoring, and/or management of the geo-environment.  相似文献   
6.
Humification evolution was identified with non-destructive characterization method. Humification process from precursors to fulvic and humic acid was confirmed. • MnO2 alone had limited oxidation ability to form HA. • MnO2 played a key role as a catalyst to transform FA to HA in the presence of O2. • MnO2 could affect the structure of the humification products. Abiotic humification is important in the formation and evolution of organic matter in soil and compost maturing processes. However, the roles of metal oxides in abiotic humification reactions under micro-aerobic remain ambiguous. The aim of this study was to use non-destructive measurement methods to investigate the role of MnO2 in the evolution of humic substances (HSs) during oxidative polymerization of polyphenol-amino acid. Our results suggested a synergistic effect between MnO2 and O2 in promoting the polymerization reaction and identified that MnO2 alone had a limited ability in accelerating the transformation of fulvic acid (FA) to humic acid (HA), whereas O2 was the key factor in the process. Two-dimensional correlation spectroscopy (2D-COS) showed that the evolution in the UV-vis spectra followed the order of 475–525 nm>300–400 nm>240–280 nm in the humification process, indicating the formation of simple organic matter followed by FA and then HA. 13C nuclear magnetic resonance (13C NMR) analysis revealed that the products under both air and N2 conditions in the presence of MnO2 had greater amounts of aromatic-C than in the absence of MnO2, demonstrating that MnO2 affected the structure of the humification products. The results of this study provided new insights into the theory of abiotic humification.  相似文献   
7.
A pilot-scale trial of four months was conducted to investigate the responses of heavy metal and nutrient to composting animal manure spiked with mushroom residues with and without earthworms. Results showed that earthworm activities accelerated organic matter mineralization (e.g. reduction in C/N ratio, increase in total concentrations of N, P, K) and humification (e.g. increase in humic acid concentration, humification ratio and humification index). Despite composting increased total heavy metal (i.e. As, Pb, Cu, Zn) concentrations irrespective of earthworm, the availability of heavy metals extracted by DTPA significantly (P < 0.05) decreased particularly in treatments with earthworms introduced. The shift from available to unavailable fractions of heavy metals was either due to earthworm bioaccumulation, as indicated by total heavy metal concentrations being higher in earthworm tissues, or due to the formation of stable metal-humus complexes as indicated by the promotion of humification. Our results suggest that vermicomposting process could magnify the nutrient quality but relieve the heavy metals risk of agricultural organic wastes.  相似文献   
8.
The co-composting of spent coffee grounds, olive mill wastewater sludge and poultry manure was investigated on a semi-industrial scale. In order to reduce the toxicity of the phenolic fraction and to improve the degree of composting humification, composts were inoculated with the white-rot fungus Trametes versicolor in the early stages of the maturation phase.During composting, a range of physico-chemical parameters (temperature and both organic matter and C/N reduction), total organic carbon, total nitrogen, elemental composition, lignin degradation and spectroscopic characteristics of the humic acids (HAs) were determined; impacts of the composting process on germination index of Hordeum vulgare and Lactuca sativa were assessed. The coffee waste proved to be a highly compostable feedstock, resulting in mature final compost with a germination index of 120% in less than 5 months composting. In addition, inoculation with T. versicolor led to a greater degree of aromatization of HA than in the control pile. Moreover, in the inoculated mixture, lignin degradation was three times greater and HA increased by 30% (P < 0.05), compared to the control pile. In the T. versicolor inoculated mixture, the averages of C and N were significantly enhanced in the HA molecules (P < 0.05), by 26% and 22%, respectively. This improvement in the degree of humification was confirmed by the ratio of optical densities of HA solutions at 465 and 665 nm which was lower for HA from the treated mixture (4.5) than that from the control pile (5.4).  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号