首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
安全科学   1篇
废物处理   1篇
污染及防治   1篇
  2015年   1篇
  2007年   1篇
  2002年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
Simultaneous sorption of lead and chlorobenzene by organobentonite   总被引:10,自引:0,他引:10  
Lee JJ  Choi J  Park JW 《Chemosphere》2002,49(10):1309-1315
Clays or organoclays have been used as a barrier to prevent the transport of hazardous contaminants in landfills. However, clays are known to effectively sorb mostly inorganic contaminants, while organoclays are mainly used for organic contaminants. Since the organoclays are basically clay particles modified with cationic surfactants, there might exist an optimal coverage of cationic surfactant on the clay particles to sorb both inorganic and organic contaminants. In order to determine the optimal mass of cationic surfactants on the bentonites, sodium bentonites were treated with various ratios of hexadecyltrimethylammonium (HDTMA) to bentonites. Chlorobenzene and lead were selected as representative contaminants. When either chlorobenzene or lead exists as a single contaminant, chlorobenzene sorption increased with increasing HDTMA to bentonite ratios, and lead sorption decreased with increasing HDTMA to bentonite ratios. Sorption of chlorobenzene was a function of HDTMA coverage on the bentonites, while lead sorption was much more influenced by the initial lead concentration rather than the mass of HDTMA added to the bentonites.  相似文献   
2.
Cationic surfactant (Hexadecyltrimenthylammonium chloride) modified bentonite clay was prepared and systematically studied for its adsorption behavior as an efficient adsorbent for the removal of basic dyes such as methylene blue (MB), crystal violet (CV) and Rhodamine B (RB) from aqueous phase. Organo modified clay shows better capacity for the removal of three dyes. The adsorption process was found to be dependent on pH and initial dye concentration. The maximum dye sorption was found to be at a pH of 9.0 (99.99% for MB, 95.0% for CV and 83.0% for RB). The adsorption capacity for the dyes was found to be 399.74, 365.11 and 324.36 μmol/g for MB, CV and RB, respectively at 30 °C. The equilibrium uptake was attained within 240 min. The kinetic studies were revealed that sorption follows a pseudo-second-order kinetic model which indicates chemisorption between adsorbent and adsorbate molecules. Adsorption isotherm indicates non-energetically adsorption sites which fit with Freundlich isotherm model. The fitness of kinetics and isotherm models was evaluated by using HYBRID error analysis function. Competitive adsorptions of dyes were studied by using binary component systems.  相似文献   
3.
Biodegradable nanocomposites based on poly(butylene succinate)/organoclay   总被引:2,自引:0,他引:2  
In this work, we try to incorporate the inorganic system into the biodegradable polymers to compose an organic/inorganic polymer hybrid. Various nanocomposites of poly(butylene succinates) (PBS) with different ratios of organically modified layered silicates (OMLS) prepared by solution blending were investigated. The OMLS used for the preparation of nanocomposites were functionalized ammonium salts modified montmorillonite. The effects of OMLS on the nanocomposites were investigated by XRD, TEM, DMA and TGA in the aspect of the d-spacing of clay, mechanical and thermal properties. Interestingly, all these nanocomposites exhibited improved properties when compared with the pristine PBS sample. XRD indicates that the layers of clay were intercalated by the modifiers, and the interlayer distance of organoclay in the nanocomposites could be extended to about 29.4 Å. Moreover, the thermal stability of the nanocomposites was enhanced by the addition of organoclay via TGA study, closely related to the organoclay content in the PBS matrix. DMA data shows that the storage and loss moduli were concurrently enhanced by the addition of organoclay as compared to the pristine PBS sample. Moreover, the glass transition temperatures also increased about 5 to 20 °C (from DMA, peak of tanδ) for the various organoclay-containing samples. The enhanced mechanical and thermal properties can be achieved from these organoclay modified-nanocomposites.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号