首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   2篇
  国内免费   2篇
安全科学   1篇
废物处理   13篇
环保管理   4篇
综合类   7篇
基础理论   1篇
污染及防治   2篇
  2021年   2篇
  2017年   2篇
  2014年   3篇
  2013年   3篇
  2012年   1篇
  2011年   4篇
  2009年   1篇
  2007年   1篇
  2006年   3篇
  2004年   2篇
  2003年   1篇
  2001年   2篇
  2000年   1篇
  1994年   1篇
  1993年   1篇
排序方式: 共有28条查询结果,搜索用时 15 毫秒
1.
国外包装废物的处理技术动向   总被引:1,自引:0,他引:1  
邹乔敏 《上海环境科学》1993,12(12):18-20,26
在欧、美、日等西方国家,废包装材料已成为主要的固体废物之一,其环境污染问题日益受到关注。本文较全面地介绍废包装材料的填埋、焚烧、循环回用、再资源化利用和减少使用包装材料等五种重要技术动击与途径。还重点介绍了美国的PET瓶的资源再利用,以及德国建立严格的包装废物法规和完善的处理系统的概况。  相似文献   
2.
Upcycling polymer wastes into useful, and valuable carbon based materials, is a challenging process. We report a novel catalyst-free and solvent-free technique for the formation of nano channeled ultrafine carbon tubes (NCUFCTs) and multiwalled carbon nanotubes (MWCNTs) from polyethylene terephthalate (PET) wastes, using rotating cathode arc discharge technique. The soot obtain from the anode contains ultrafine and nano-sized solid carbon spheres (SCS) with a mean diameter of 221 nm and 100 nm, respectively, formed at the lower temperature region of the anode where the temperature is approximately 1700 °C. The carbon spheres are converted into long “Y” type branched and non-branched NCUFCTs and MWCNTs at higher temperature regions where the temperature is approximately 2600 °C, with mean diameters of 364 nm and 95 nm, respectively. Soot deposited on the cathode is composed of MWCNTs with a mean diameter of 20 nm and other nanoparticles. The tubular structures present in the anode are longer, bent and often coiled with lesser graphitization compared to the nanotubes in the soot on the cathode.  相似文献   
3.
A simple sample preparation technique was developed for rapid analysis of acetaldehyde residue in Polyethylene Terephthalate (PET) bottles. A laboratory-built heating system was used and coupled with gas chromatography-flame ionization detector (GC-FID) at optimized conditions. The results were a tremendous reduction of the sample preparation time from 24 hours, for the conventional method, to only one hour. The analysis took only 1.5 min with other good analytical performances i.e. a low detection limit, 0.3 ng mL? 1 and a wide linear dynamic range, 0.3 ng mL? 1 to 6.6 μ g mL? 1 with R2 > 0.99.Acetaldehyde residue in freshly blown bottles were analyzed and found in the range of 0.4 to 1.1 ng mL? 1. The results were good agreement with the conventional 24-hour airspace method (P < 0.01). The PET-bottle sampling technique was also developed to minimize the complication of sample transportation and pre-concentration. A purge and trap technique was found to be the most suitable. Then, it was implemented and compared, the results showed no significant difference (P < 0.01) with and without purge and trap.  相似文献   
4.
Recycled plastics are considered low performance materials because their properties are expected to decrease drastically with recycling. The objective of this study was to characterize a 15 wt.% glass filled polyethylene terephthalate (rPET-15GF) using six recycle generations and four recycle ratios. Mechanical properties such as tensile strength, elastic modulus, and percent elongation to failure of the PET composite were determined for various recycle generations and recycle ratios. Results show that the mechanical properties of rPET-15GF decrease slightly per recycle generation. In contrast, thermal properties of rPET-15GF were not at all affected by the recycling process. This data demonstrates that recycled glass filled PET can be used effectively to fabricate components without significantly affecting their mechanical performance.  相似文献   
5.
Material recovery processes are presented as the optimum option for recycling plastic wastes as a means of recovering hydrocarbon resources. There exist a large variety of automated material recovery processes for recycling of such wastes but each with significant limitations. Of these, the separation based on differences in densities is advocated as the optimum process either for producing recycled products or preparing wastes for subsequent recovery processing.Density separation processes based on cyclone type density media separation (DMS) is presented as an important, potential method for increasing plastics recycling process capacities. It is demonstrated to have the capacity to separate a significantly larger range of particle sizes than those presently processed industrially. The mathematical relationship for the prediction of quality of typical LARCODEMS type density media separations by particle size and density as expressed by the Ecart Probable is presented.A proposed device configuration is presented for density media separation to optimize the recovery and purity of both density fractions produced. It is also suggested that to be economically viable, a large scale of operation is required for industrial plastics recycling operations recovering and producing a number of different plastics with a purity to be used as a substitute for virgin material.  相似文献   
6.
This study focused on waste plastic, especially the polyethylene telephthalate (PET) bottle as representative waste, which has been assigned as goods to be recycled by the Packaging Waste Recycling Law in Japan. We developed a plastic transport model which explained the entire flow of plastic from the production stage to the disposal stage within an the evaluation model of plastic recycle policy based on multiattribute utility theory. This model is designed to be used by local municipal governments in supporting the evaluation of the PET bottle recycling policy. In evaluating the plastics recycling policy, we selected indices relating to economy, ecology, and rate of resource recycling. The results indicate that when the evaluation of the material recycling policy and thermal recycling policy in the model city were characterized in terms of their economic and environmental aspects the thermal recycling policy had the highest utility within our scenario. Received: July 31, 1998 / Accepted: January 26, 1999  相似文献   
7.
对苯二甲酸和聚脂生产废水处理技术综述   总被引:4,自引:0,他引:4  
对苯二甲酸和聚脂均是化纤工业中的重要原料,本文论述了对这两种生产废水的处理技术,并比较了不同处理方法的优缺点。  相似文献   
8.
聚酯(PET)废塑料分离回收方法研究   总被引:3,自引:0,他引:3  
日常用的饮料瓶是聚酯和高密度聚乙烯为原是制成的,因而聚酯废塑料瓶是数量较多和回收价值高的一种塑料,本研究首先对聚酯废料瓶进行破碎,然后采用气流分选,清洗净化和水浮选组合工艺进行PET和HDPE及塑纸的分离回收。PET和HDPE的回收率分别为97%和95%,同时通过清洗净化可使回收的PET纯度达96%以上,该PET是一种用途广的优良塑料原料。  相似文献   
9.
Production of polyethylene teraphtalate (PET) fiber in the world is increasing every year and reached to an amount of about 20 million tons a year in 2001. The wastes occur in the production of PET fiber in the amount of about 3–5% of total production. The PET does not degrade for a long time in nature. Since PET is a derivative of petroleum, the wastes of PET are valuable and must be recycled. One of the recycling method of PET wastes is re-melting. Thus, various properties of the PET wastes were improved using the re-melting method by employing an extruder manufactured for the work. Degradation during re-melting decreases the properties of the final product. The results indicate that the properties of recycled PET wastes can be monitored by designing the parameters of the extruder. Also, the further degradation of the material can be prevented and the recycling costs are minimized.  相似文献   
10.
Increasing awareness of environmental and energy problems has promoted greater governmental interest in selected waste collection and consequently has attracted the interest of several research groups to the challenge of converting recovered plastics into useful materials. The reactive blending of postconsumer polyethylene terephthalate (PET) with different polyolefins (PO) was studied in attempts to obtain a new material with enhanced properties with respect to the starting materials. The success of the project depends mainly on the possibility of obtaining a compatibilized blend between two starting polymers that, from chemical and thermomechanical viewpoints, are very different. This was approached by employing polyolefins bearing functional groups capable of specific interaction or chemical reaction with PET end groups. Ternary blends of very low density polyethylene (VLDPE)/PET/functionalized polyolefin (FPO) in a weight composition of 70/20/10 and binary blends of FPO/PET in a weight composition of 90/10 were prepared and studied to obtain reinforced polyolefin thermoplastic materials. Reactive blending was achieved in a Brabender Plastograph with a mixing chamber of 30 or 50cm3, at 250°C, and 40rpm for 10min. Differential scanning calorimetry, scanning electron microscopy, and tensile tests were used to investigate the phase behavior, the efficiency of compatibilization, and the mechanical properties of the blends.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号