首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   1篇
  国内免费   3篇
安全科学   2篇
废物处理   4篇
综合类   9篇
污染及防治   2篇
  2024年   1篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2018年   1篇
  2015年   1篇
  2013年   1篇
  2009年   2篇
  2007年   2篇
  2005年   2篇
  2003年   1篇
  2001年   2篇
  1998年   1篇
排序方式: 共有17条查询结果,搜索用时 31 毫秒
1.
Low-density polyethylene (LDPE) has been widely used as a sorbent for passive sampling of hydrophobic organic contaminants (HOCs) in aquatic environments. However, it has seen only limited application in passive sampling for measurement of freely dissolved concentrations of parent and substituted PAHs (SPAHs), which are known to be toxic, mutagenic and carcinogenic. Here, the 16 priority PAHs and some typical PAHs were selected as target compounds and were simultaneously determined by gas chromatography–mass spectrometer (GC–MS). Some batch experiments were conducted in the laboratory to explore the adsorption kinetics of the target compounds in LDPE membranes. The results showed that both PAHs and SPAHs could reach equilibrium status within 19–38?days in sorption kinetic experiments. The coefficients of partitioning between LDPE film (50?μm thickness) and water (KLDPE) for the 16 priority PAHs were in good agreement with previously reported values, and the values of KLDPE for the 9 SPAHs are reported in this study for the first time. Significant linear relationships were observed, i.e., log KLDPE?=?0.705?×?log KOW?+?1.534 for PAHs (R2?=?0.8361, p?<?0.001) and log KLDPE?=?0.458?×?log KOW?+?3.092 for SPAHs (R2?=?0.5609, p?=?0.0077). The selected LDPE film was also proven to meet the condition of “zero sink” for the selected target compounds. These results could provide basic support for the configuration and in situ application of passive samplers.  相似文献   
2.
低密度聚乙烯膜(Low-Density Polyethylene,LDPE)在有机物原位被动采样中具有使用简便、耗用量少、成本低廉的优点,但在内分泌干扰物(Endocrine Disrupting Chemicals,EDCs)被动采集方面鲜见应用,有关其平衡分配系数(KLDPE)也不十分清楚.基于此,本文选取7种EDCs,包括双酚A(BPA)、壬基酚(4-NP)、辛基酚(4-t-OP)、雌酮(E1)、β17-雌二醇(E2)、三氯生(TCS)和三氯卡班(TCC),室内模拟LDPE原位动态富集过程,探究了环境因素(温度、pH)对LDPE富集效果的影响,并确定了不同EDCs在LDPE上的富集参数(KLDPE).研究发现,溶液温度升高可以加速LDPE膜对EDCs的吸附,在过低温度条件下(实验设置为4℃),EDCs较难达到膜-水分配平衡;溶液pH对于不同EDCs的影响不尽相同,这可能是因为不同pH条件下EDCs在溶液中形态差异明显,进而影响其在LDPE膜-水之间的分配平衡;7种EDCs的KLDPE实测值均低于各自的经验理论值,这主要由于经验理论值计算过程中未考虑达到分配平衡时有机物从LDPE膜上的解吸附过程,且只考虑了EDCs在膜-水两相之间的平衡.上述结果表明,为提高被动采样测定环境样品中EDCs的准确性,在尽量与实际条件相似的室内条件下获取KLDPE实测值是非常必要的.  相似文献   
3.

Low-density polyethylene (LDPE) film residues left in farmlands due to agricultural activities were extensively investigated to evaluate the present pollution situation by selecting the typical areas with LDPE film application, including Harbin, Baoding, and Handan of China. The survey results demonstrated that the film residues were ubiquitous within the investigaed areas and the amount reached 2400–8200 g ha?1. Breakage rates of the film residues were almost at the same level in the studied fields. There were relatively small amounts of film residues remaining in neighboring farmland fields without application of LDPE film. The studies showed that the sheets of LDPE residues had the same oxidative deterioration, which was probably due to photodegradation instead of biodegradation. The higher molecular weight components of the LDPE film gradually decreased, which were reflected by the appearance of some small flakes detached from the film bodies. LDPE films in the investigated fields gradually deteriorated and the decomposing levels developed with their left time increasing. The degradation behaviors of LDPE films were confirmed by using Fourier transform infrared (FTIR), scanning electron microscopic (SEM), and gel permeation chromatography analyses.  相似文献   
4.
In this paper the reuse of recycled LDPE in combination with the incorporation of EPDM modifier in the production of greenhouse films has been investigated. A three-layer film (60-100-40 micron thickness) containing recycled LDPE in the middle layer and a high UV-stabilized 40-micron outer layer was developed and proven to be commercially successful. Films with 25% and 50% recycled material content were produced. The effect of natural weathering on the film properties over a period of 15 months has been observed. Changes in physical and mechanical property were determined. The addition of EPDM to the raw resin was found to improve the extrudability of the compound and improve the weather resistivity of the film. The EPDM-modified films containing 25% to 50% recycled material retained approximately 95% and 75%, respectively, of their original extensibility after 9 months' exposure to natural weathering. Optimization of EPDM and UV stabilizer concentration was carried out to develop a balanced film with excellent mechanical and physical properties and resistance to weathering conditions. The use of UV stabilizer concentrations slightly higher than commercial practice in the outer layer of the multilayer film can be justified by the cost reduction by the incorporation of recycled LDPE materials.  相似文献   
5.
The thermal LDPE degradation mechanism harnessing a high-pressure autoclave surrounded by a furnace was investigated in this work. Rates of formation of gas, liquid, and solid during degradation of PE plastic wastes in cyclohexane as solvent at 400 and 425°C have been experimentally determined. Four reaction mechanisms have been proposed and tested to estimates of gas, liquid, and solid. Proposed mechanisms are based on the assumption that the reactions are pseudo-first-order with respect to the reacting species. Pseudo-first-order rate constants for each of the indicated mechanistic steps have been calculated by nonlinear regression analysis. The best fit was obtained by model 2 (pure parallel reaction mechanism), and its activation energy was determined.  相似文献   
6.
合成硬脂酸铁(FeSt3)、硬脂酸铈(CeSt4)和硬脂酸锰(MnSt2),用母粒法制备了可光降解LDPE薄膜。采用傅立叶红外变换光谱仪、万能材料试验机和乌氏粘度计测定羰基指数、断裂伸长率、拉伸强度和分子量,研究了这3种光敏剂及其用量对LDPE降解程度的影响。结果表明,3种光敏剂的光敏活性FeSt3〉CeSt4〉MnSt2;LDPE的光降解程度并非随着光敏剂含量的增加而增大,在控制用量的情况下。MnSt2更适合用作稳定剂;光降解使链结构发生了变化。分子量降低。  相似文献   
7.
为提高低密度聚乙烯(LDPE)阻燃性能和阻燃LDPE复合材料的力学性能与抑烟性能,采用原位聚合法制备三聚氰胺-甲醛(MF)树脂包覆二乙基次磷酸铝(ADP)的MF@ADP微胶囊,再引入三聚氰胺聚磷酸(MPP)与MF@ADP进行协效复配,熔融共混制备阻燃LDPE复合材料。通过氧指数、热重分析、力学测试和烟密度测试等研究复合材料的阻燃、力学和抑烟性能。研究结果表明:MF@ADP微胶囊能改善阻燃剂与复合材料之间的相容性,与MPP复配构成的磷-氮膨胀阻燃体系能有效提高LDPE的抑烟性能;当MF@ADP∶MPP的质量比为2∶1时,材料的LOI达到了30.6%,垂直燃烧测试达到UL-94 V0级,拉伸强度为11.8 MPa,且形成的P/N/O高聚物炭层稳定性更高,可减少LDPE燃烧释放的烟雾量。  相似文献   
8.
The present work aims to the valorization of regenerated low density polyethylene (LDPE) by blending with small quantities of ethylene-propylene-diene monomer (EPDM). Three types of regenerated LDPE (rLDPE) from different waste sources (greenhouses, milk pouches,...) were characterized in terms of physico-chemical (density, melt flow index, water absorption, melting temperature and structure by Fourier transform infrared (FTIR) spectroscopy) and mechanical properties (tensile properties and hardness). The optimization of the peroxide content required for the crosslinking of the LDPE/EPDM blends was due by measuring torque and tensile strength. Once the peroxide content was optimized, different blends were obtained by varying the EPDM content. Then they were characterized physically (density, water absorption) and mechanically (tensile properties and hardness). Finally, the blends behavior under the conjugated effect of heat and water was determined at 70 °C for 7 days. The obtained results showed that this kind of blending has contributed in improving the performance of regenerated LDPE.  相似文献   
9.
为评估超高压聚乙烯(LDPE)装置乙烯压缩过程的失控风险,采用ASPEN等对乙烯等熵增压过程热效应进行了系统性研究。研究表明,乙烯分解速率随温度升高呈指数型增长,分解爆炸的最大压力为初始压力的3.5倍。工况条件下乙烯一级等熵压缩至250 MPa时的绝热温升为724℃,50 MPa为增压梯度的关键变化点。采用两次六级的形式进行增压,2个压缩机的绝热温升降分别为390,101℃。乙烯泄放过程的冲击波会使界面侧空气压缩升温,空气等熵压缩至1 MPa时温度可达到400℃。在乙烯增压过程中应综合考虑压缩级数与热效应,并严格控制绝热温升。  相似文献   
10.
范娟  周岩梅 《中国环境科学》2015,35(11):3340-3345
选用3种厚度的低密度聚乙烯(LDPE)膜(76,56和25μm)作为研究对象,对辛醇-水分配系数的对数(logKow)>2的有机污染物采用被动采样技术进行膜-水分配系数(Kpew)实测实验和动力学实验,首次建立考虑时间(t),膜厚度(d)和动力学3个因素的LDPE膜 Kpew预测模型.实验结果表明,预测模型得到的Kpew与实测Kpew的相对误差为±0.03,证明了预测模型的准确性和可靠性.Kpew预测模型的建立避免了实验监测Kpew的繁琐实验过程,从而极大地提高了有机污染物的监测效率.将预测模型Kpew值应用于浑河与东洲河有机污染物质的监测,监测结果进一步表明了预测模型的准确性和实用性.此外本文首次提出了苯系物的Kpew值,对LDPE膜被动采样技术应用的延伸属于突破性进展.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号