首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
废物处理   3篇
污染及防治   3篇
  2014年   1篇
  2013年   4篇
  2011年   1篇
排序方式: 共有6条查询结果,搜索用时 481 毫秒
1
1.
Due to the increase in energy cost by constantly high oil prices and the obligation to reduce greenhouse effect gases, landfill gas is frequently used as an alternative energy source for producing heat and electricity. Most of landfill gas utility facilities, however, are experiencing problems controlling siloxanes from landfill gas as their catalytic oxidizers are becoming fouled by silicon dioxide dust. To evaluate adsorption characteristics of siloxanes, an adsorption equilibrium test was conducted and parameters in the Freundlich and Langmuir isotherms were analyzed. Coconut activated carbon (CA1), coal activated carbon (CA2), impregnated activated carbon (CA3), silicagel (NCA1), and activated alumina (NCA2) were used for the adsorption of the mixed siloxane which contained hexamethyldisiloxane (L2), octamethylcyclotetrasiloxane (D4), and decamethylcyclopentasiloxane (D5). L2 had higher removal efficiency in noncarbon adsorbents compared to carbon adsorbents. The application of Langmuir and Freundlich adsorption isotherm demonstrated that coconut based CA1 and CA3 provided higher adsorption capacity on L2. And CA2 and NCA1 provided higher adsorption capacity on D4 and D5. Based on the experimental results, L2, D4, and D5 were converted by adsorption and desorption in noncarbon adsorbents. Adsorption affinity of siloxane is considered to be affect by the pore size distribution of the adsorbents and by the molecular size of each siloxane.  相似文献   
2.
The EQuilibrium Criterion (EQC) model developed and published in 1996 was recently revised to include improved treatment of input partitioning and reactivity data, temperature dependence and an easier sensitivity and uncertainty analysis. This New EQC model was used to evaluate the multimedia, fugacity-based fate of decamethylcyclopentasiloxane (D5; CAS No. 541-02-6) in the environment over a temperature range of 1–25 °C. In addition, Monte Carlo uncertainty analysis was used to quantitatively determine the influence of temperature and input partitioning and reactivity data on the behavior of D5 under various emission scenarios. Results indicated that emission mode was the most influential factor determining the fate and distribution of D5 in the model environment. When emitted to air and soil, D5 partitioned to and remained in the air compartment where rates of removal from degradation and advection processes were relatively rapid. In contrast, D5 emitted to water resulted in a substantial mass fraction of D5 being accumulated in the sediment compartment, where rates of removal from degradation and advection processes were slow. The mass distributions and fate of D5 in the model environment were strongly influenced by multiple input parameters, including temperature, the mode of emission (especially emission rate to water), KOC and half-life in air. As temperature decreased from 25 °C to 1 °C, KOC and half-life in air became increasingly more influential such that the mass distribution of D5 increased in air and decreased in sediment, resulting in decreased overall persistence.  相似文献   
3.
We investigated the concentrations and profiles of 15 siloxanes (four cyclic siloxanes, D4-D7; 11 linear siloxanes, L4-L14), four synthetic musks (two polycyclic musks, HHCB and AHTN; two nitro musks, MX and MK), and HHCB-lactone, in 158 personal care products marketed in China. Siloxanes were detected in 88% of the samples analyzed, at concentrations as high as 52.6 mg g−1; Linear siloxanes were the predominant compounds. Among synthetic musks, more than 80% of the samples contained at least one of these compounds, and their total concentrations were as high as 1.02 mg g−1. HHCB was the predominant musk in all of the samples analyzed, on average, accounting for 52% of the total musk concentrations. Based on the median concentrations of siloxanes and musks and the average daily usage amounts of consumer products, dermal exposure rates in adults were calculated to be 3.69 and 3.38 mg d−1 for siloxanes and musks, respectively.  相似文献   
4.
Several methods were developed to detect the cyclic volatile methylsiloxanes (cVMSs) including octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6) in water, sediment, soil, biota, and biosolid samples. Analytical techniques employed to optimize measurement of this compound class in various matrices included membrane-assisted solvent extraction in water, liquid–solid extraction for sediment, soil, biota, and biosolid samples. A subsequent analysis of the extract was conducted by large-volume injection–gas chromatography−mass spectrometry (LVI−GC−MS). These methods employed no evaporative techniques to avoid potential losses and contamination of the volatile siloxanes. To compensate for the inability to improve detection limits by concentrating final sample extract volumes we used a LVI–GC–MS. Contamination during analysis was minimized by using a septumless GC configuration to avoid cVMS’s associated with septum bleed. These methods performed well achieving good linearity, low limits of detection, good precision, recovery, and a wide dynamic range. In addition, stability of cVMS in water and sediment was assessed under various storage conditions. D4 and D5 in Type-I (Milli-Q) water stored at 4 °C were stable within 29 d; however, significant depletion of D6 (60–70%) occurred only after 3 d. Whereas cVMS in sewage influent and effluent were stable at 4 °C within 21 d. cVMS in sediment sealed in amber glass jars at −20 °C and in pentane extracts in vials at −15 °C were stable during 1 month under both storage conditions.  相似文献   
5.
The objectives of this study were to compare the types and levels of volatile methyl siloxanes (VMS) present in biogas generated in the anaerobic digesters and landfills, evaluate the energetics of siloxane transformations under anaerobic conditions, compare the conditions in anaerobic digesters and municipal solid waste (MSW) landfills which result in differences in siloxane compositions. Biogas samples were collected at the South District Wastewater Treatment Plant and South Dade Landfill in Miami, Florida. In the digester gas, D4 and D5 comprised the bulk of total siloxanes (62% and 27%, respectively) whereas in the landfill gas, the bulk of siloxanes were trimethylsilanol (TMSOH) (58%) followed by D4 (17%). Presence of high levels of TMSOH in the landfill gas indicates that methane utilization may be a possible reaction mechanism for TMSOH formation. The free energy change for transformation of D5 and D4 to TMSOH either by hydrogen or methane utilization are thermodynamically favorable. Either hydrogen or methane should be present at relatively high concentrations for TMSOH formation which explains the high levels present in the landfill gas. The high bond energy and bond distance of the Si–O bond, in view of the atomic sizes of Si and O atoms, indicate that Si atoms can provide a barrier, making it difficult to break the Si–O bonds especially for molecules with specific geometric configurations such as D4 and D5 where oxygen atoms are positioned inside the frame formed by the large Si atoms which are surrounded by the methyl groups.  相似文献   
6.
Biogas utilized for energy production needs to be free from organic silicon compounds, as their burning has damaging effects on turbines and engines; organic silicon compounds in the form of siloxanes can be found in biogas produced from urban wastes, due to their massive industrial use in synthetic product, such as cosmetics, detergents and paints.Siloxanes removal from biogas can be carried out by various methods (Mona, 2009, Ajhar et al., 2010, Schweigkofler and Niessner, 2001); aim of the present work is to find a single practical and economic way to drastically and simultaneously reduce both the hydrogen sulphide and the siloxanes concentration to less than 1 ppm. Some commercial activated carbons previously selected (Monteleone et al., 2011) as being effective in hydrogen sulfide up taking have been tested in an adsorption measurement apparatus, by flowing the most volatile siloxane (hexamethyldisiloxane or L2) in a nitrogen stream, typically 100–200 ppm L2 over N2, through an activated carbon powder bed; the adsorption process was analyzed by varying some experimental parameters (concentration, grain size, bed height). The best activated carbon shows an adsorption capacity of 0.1 g L2 per gram of carbon. The next thermogravimetric analysis (TGA) confirms the capacity data obtained experimentally by the breakthrough curve tests.The capacity results depend on L2 concentration. A regenerative carbon process is then carried out by heating the carbon bed up to 200 °C and flushing out the adsorbed L2 samples in a nitrogen stream in a three step heating procedure up to 200 °C. The adsorption capacity is observed to degrade after cycling the samples through several adsorption–desorption cycles.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号