首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
废物处理   4篇
  1997年   1篇
  1996年   3篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
Model oligo esters of terephthalic acid with 1,2-ethanediol, 1,3-propanediol, and 1,4-butanediol have been investigated with regard to their biodegradability in different biological environments. Well-characterized oligomers with weight-average molar masses of from 600 to 2600 g/mol exhibit biodegradation in aqueous systems, soil, and compost at 60°C. SEC investigations showed a fast biological degradation of the oligomer fraction consisting of 1 or 2 repeating units, independent of the diol component used for polycondensation, while polyester oligomers with degrees of polymerization higher than 2 were stable against microbial attack at room temperature in a time frame of 2 months. At 60°C in a compost environment chemical hydrolysis also degrades chains longer than two repeating units, resulting in enhanced degradability of the oligomers. Metabolization of the monomers and the dimers as well by the microorganisms could be confirmed by comparing SEC measurements and carbon balances in a Sturm test experiment. Based on these results degradation characteristics of potential oligomer intermediates resulting from a primary chain scission from copolyesters consisting of aromatic and aliphatic dicarbonic acids can be predicted depending on their composition. These results will have an evident influence on the evaluation of the biodegradability of commercially interesting copolyesters and lead to new ways of tailor-made designing of new biodegradable materials as well.  相似文献   
2.
In an attempt to increase the range of analytical techniques able to monitor ultimate degradation stages of degradable, biodegradable, and bioresorbable polymers, capillary zone electrophoresis (CZE) was used to analyze tentatively oligomers formed during thermal condensation of lactic, glycolic, anddl-3-hydroxybutyric acids. The influence of the buffer and of capillary coating are discussed in terms of electroosmotic flow. Typical analyses were first performed using a 0.1M borate buffer (pH 8.9) with anodic injection. In the case of lactic acid, seven peaks were well separated, while only three peaks were observed for glycolic acid. A more complex situation was found fordl-3-hydroxybutyric acid oligomers. The first five peaks were split. The major component of each doublet was attributed to hydroxy-terminated oligomers, whereas the satellite peaks were assigned to oligomers bearing a C=C double bond at the noncarboxylic terminus. CZE of pH-sensitive lactic acid oligomers was also performed in 0.05M phosphate buffer (pH 6.8) with cathodic injection after physical coating of the fused-silica capillary with DEAE-Dextran. The buffer-soluble fraction present in lactic acid oligomers was extracted from a dichloromethane solution. Extracts issued from different batches of lactic acid condensates gave a constant water-solubility pattern whose cutoff was at the level of the decamer. CZE was also used to monitor thein vitro aging of aqueous solutions of these water-soluble oligomers. The lactyllactic acid dimer appeared more stable than higher oligomers, thus showing that ultimate stages of the degradation did not proceed at random. These physicochemical characteristics were used to complement the degradation pathway based on diffusion of oligomers duringin vitro aging of large size lactic acid plates made by compression molding. CZE data showed that lactic acid was the only component which was released in the aqueous medium during degradation.Presented by C.B. at the 4th International Workshop on Biodegradable Plastics and Polymers, October 11–14, 1995, Durham, NH, USA.  相似文献   
3.
Oligomers of poly(3-hydroxybutyric acid) (P(3-HB)) were prepared by partial degradation of high molecular weight P(3-HB) dissolved in 1,2-dichloroethane/water mixture in the presence of p-toluene sulfonic acid (p-TSA). The water-soluble fraction of the resulting oligomers was extracted from the mixture with neutral sodium phosphate buffer. Capillary zone electrophoresis showed that the aqueous extracts were composed of two series of oligomers. The first one was composed of one to seven P(3-HB) oligomers (O(3-HB)). In contrast, the second series was composed of four oligomers characterized by the presence of a terminal C=C bond [O’(3-HB)]. Both series of oligomers behaved differently insofar as their fate in aqueous medium was concerned. The 0(3-HB) compounds were stable over a period of 2 months. On the other hand, the population of the O’(3-HB) oligomers varied, the proportion of oligomers increasing with aging time.  相似文献   
4.
Poly(-alkanoates) derived from lactic acid enantiomers are known to degrade easily hydrolytically in aqueous media. The ability of two microorganisms, a filamentous fungus,Fusarium moniliforme, and a bacterium,Pseudomonas putida, to assimilate the degradation by-products of poly(lactic acid) (PLA), namely, lactic acid, lactyllactic acid dimers, and higher oligomers, was investigated in liquid culture. To distinguish the influence of chirality on bioassimilation, two series of substrates were considered which derived from the racemic and the L-form of lactic acid, respectively. The fate of these compounds was monitored by HPLC. Under the selected conditions,DL- andL-lactic acids were totally used by the two microorganisms regardless of the enantiomeric composition. Both microorganisms degraded the LL-dimer rather rapidly. However,F. moniliforme acted more rapidly thanP. putida. It is likely that the DD-dimer also biodegraded but at a slower rate, especially in the case of the fungi. Higher racemic oligomers were slowly assimilated by the two microorganisms, whereas higher L-oligomers appeared biostable probably because of their crystallinity. A synergistic effect was observed when both microorganisms were present in the same culture medium containing racemic oligomers.Presented at the 4th International Workshop on Biodegradable Plastics and Polymers, October 11–14, 1995. Durham, New Hampshire.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号