首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
废物处理   4篇
环保管理   1篇
综合类   1篇
  2019年   1篇
  2011年   1篇
  2004年   1篇
  2003年   1篇
  2002年   2篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
The study focused on Nigeria's polyurethane (PU) production process as a test case. Though it is currently insignificant when viewed from a global perspective, PU production in Nigeria is not eco‐friendly. Traditionally, PU is produced by reacting petro‐based polyol with a poly‐isocyanate, which is made from amines and phosgene and are currently imported into the country. These two materials are detrimental to the human health and environment, indicating that Nigeria's PU industries need to re‐examine their production inputs for environmental compliance. The objective of this study is to review the PU industry for nontoxic reagents that could be sourced locally vis‐à‐vis overcoming sustainable development (greening the economy) challenges in Nigeria. Non‐isocyanate polyurethane (NIPU) is preferred to petro‐polyurethane because, in comparison, NIPU has improved thermal and chemical resistance, porosity and water absorption, and is less toxic. Engaging local resources to produce PU is economically feasible; in addition, NIPU is relatively advantageous to human health and the environment. Aside from being economically feasible, production of NIPU in Nigeria has the propensity to greatly enlarge the growth of the existing PU industry to tremendous heights and contribute to diversifying and improving the overall economy.  相似文献   
2.
Polyisocyanurate foams were prepared from polymeric 4,4-diphenylmethane diisocyanate (MDI), soy polyol and polypropylene oxide polyol by varying isocyanate index from 110 to 350. The higher isocyanate index produced polyisocyanurate foams with higher thermal stability, improved flame resistance, tensile strength, higher modulus, and higher glass transition. Soy-based foams displayed better thermal stability, lower flammability, higher rigidity (modulus) and higher compression strength than those based on the propylene oxide polyols of the same molecular weight and functionality.  相似文献   
3.
Biobased polyurethanes from soybean oil–derived polyols and polymeric diphenylmethane diisocyanate (pMDI) are prepared and their thermomechanical properties are studied and evaluated. The cross-linked biobased polyurethanes being prepared from soy phosphate ester polyols with hydroxyl contents ranging from 122 to 145 mg KOH/g and pMDI within 5 min of reaction time at 150°C in absence of any catalyst show cross-linking densities ranging from 1.8 × 103 to 3.0 × 103 M/m3, whereas glass transition temperatures vary from approximately 69 to 82°C. The loss factor (tan ) curves show single peaks for all these biobased polyurethanes, thus indicating a single-phase system. The storage moduli (G) at 30°C range from 4 × 108 to 1.3 × 109 Pa. Upon postcure at 150°C, the thermomechanical properties can be optimized. Cross-link densities are improved significantly for hydroxyl content of 139 and 145 mg KOH/g at curing time of 24 h. Similarly, glass transition temperature (Tg) and storage moduli around and after Tg are increased. Meanwhile, tan intensities decrease as result of restricted chain mobility. Longer exposure time (24 h) induces thermal degradation, as evidenced by thermogravimetric analysis (TGA). The dynamic mechanical (DMA) analysis shows that postcure at 100°C for times exceeding 24 h also leads to improved properties. However, cross-linking densities are lower compared to postcure carried out at 150°C.  相似文献   
4.
Polyurethane networks from soybean oil have a number of valuable properties, which are determined by their chemical composition and cross-linking density. Changing the molar ratio of reacting groups can vary the latter. In this work we have varied the NCO/OH molar ratio (isocyanate index) from 1.05 to 0.40 in a soy polyol/MDI system, and tested physical and mechanical properties. The degree of swelling in toluene increased from 52–206% by decreasing isocyanate index from 1.05–0.4. The sol fractions and network densities determined from swelling in toluene were compared with ones obtained using the network formation theory based on branching processes. The comparison of experimental sol fractions and network densities with those predicted by theory of network formation suggest that 5–10% of bonds are lost in cycles and that high entanglement contributions increase the network densities. Polymers prepared with NCO/OH ratios from 1.05–0.8 were glassy while the others were rubbery, and that was reflected in their properties. Glass transition temperature (DSC) of the networks decreased from 64–7°C, tensile strength from 47–0.3 MPa, and elongation at break increased from 7–232%. The activation energy of the glass transition, determined from dielectric spectra, varied from 222–156 kJ/mol as the molar ratio of NCO to OH groups decreased from 1.05–0.4.  相似文献   
5.
Polyols and Polyurethanes from Hydroformylation of Soybean Oil   总被引:10,自引:0,他引:10  
This paper compares physical and mechanical properties of polyurethanes derived via the hydroformylation approach and is a part of our study on the structure–property relationships in polyurethanes created from vegetable oils. The double bonds of soybean oil are first converted to aldehydes through hydroformylation using either rhodium or cobalt as the catalyst. The aldehydes are hydrogenated by Raney nickel to alcohols, forming a triglyceride polyol. The latter is reacted with polymeric MDI to yield the polyurethane. Depending on the degree of conversion, the materials can behave as hard rubbers or rigid plastics. The rhodium-catalyzed reaction afforded a polyol with a 95% conversion, giving rise to a rigid polyurethane, while the cobalt-catalyzed reaction gives a polyol with a 67% conversion, leading to a hard rubber having lower mechanical strengths. Addition of glycerine as a cross-linker systematically improves the properties of the polyurethanes. The polyols are characterized by DSC. The measured properties of polyurethanes include glass transition temperatures, tensile strengths, flexural moduli, and impact strengths.  相似文献   
6.
在环境危机日益严重、环境保护的要求日益迫切的形势下,降解塑料已成为高分子材料领域的研究热点。聚氨酯材料在包装和医疗领域具有广泛的应用,其可降解化研究具有重要的科学和社会意义。总结和回顾了可降解聚氨酯材料领域的现状及发展历程,阐述了其性能特点及需要解决的技术问题与难点,展望了本领域未来的发展趋势。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号