首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
  国内免费   7篇
废物处理   1篇
环保管理   1篇
综合类   10篇
基础理论   1篇
污染及防治   3篇
  2021年   1篇
  2018年   2篇
  2015年   3篇
  2012年   1篇
  2011年   2篇
  2009年   1篇
  2008年   1篇
  2007年   2篇
  2006年   2篇
  2000年   1篇
排序方式: 共有16条查询结果,搜索用时 31 毫秒
1.
通过对污水污泥加富培养和驯化制成污泥生物淋滤的混合接种物。用混合接种物接种,固定能源物质硫粉质量浓度为2g/L,研究FeSO4·7H2O的投加量对污泥中重金属Cu,Zn,Pb,Cd生物淋滤的影响。实验结果表明,FeS04·7H20的加入量为5-10g/L时淋滤效果最为合适。在28℃,180r/min的条件下淋滤15d,Cu,Zn,Pb和Cd的溶出率可分别达到81、09%,81.40%,67、55%和56、59%。通过比较发现,采用混合接种物进行生物淋滤,与采用纯种茵相比在重金属溶出和营养物质保存方面都有较好的效果。  相似文献   
2.
Acidic bioleaching of heavy metals from sewage sludge   总被引:2,自引:0,他引:2  
The overall objective of this study was to evaluate the use of controlled bio-acidification prior to land application as a decontamination process to remove heavy metals from sludge. The sulfur-oxidizing bacteria were naturally available in the sludge samples and were activated by providing sulfur and aeration at 28°C–30°C. Activation resulted in bio-acidification to pH 2 within 5–11 days. Successive inoculation of fresh sludges with 5% acidified samples reduced the acidification time to 2–3 days in most samples. Bio-acidification resulted in dissolving significant quantities of heavy metals from all sludge types tested. The maximum solubilization results were: 86%–97% for Ni; 48%–98% for Pb; 26%–71% for Cr; 18%–91% for Zn; 16%–90% for Cu; 7%–60% for Cd. Limited metal solubilization results were observed in the various control samples that accompanied the bio-acidified samples. The leaching results in the control samples were limited to 2%–19% for Ni, 0%–7% for Pb, 0%–5% for Cr, 0.3%–4% for Zn, 0.2%–4% for Cu and 0%–3% for Cd. The results confirmed that Ni and Pb were the easiest metals to dissolve from the various sludge types. On the other hand, the lowest solubilization results were observed for Cu and Cd, and moderate solubilization results were achieved for Cr. The bio-acidification process resulted in moderate gains in terms of improving the suitability of tested sludges for land application. Received: April 19, 1999 / Accepted: November 4, 1999  相似文献   
3.
污泥酸化速率影响因子的探讨   总被引:2,自引:0,他引:2  
采用城市污水厂污泥作为嗜酸微生物菌株来源,通过添加一定量的单质硫,使其中的嗜酸硫杆菌群大量增殖,并使污泥pH大幅降低.取得的培养物可用于废旧干电池中重金属沥滤等的处理.由于培养物对重金属沥滤效率和污泥的酸化速率密切相关,为此进行了不同的污泥种类、加硫量、污泥浓度和曝气强度对污泥酸化速率影响的实验.实验表明,初沉泥、二沉泥和混合浓缩污泥都能迅速利用硫产酸;加硫量(以100 mL污泥计)在0.5、1.0、2.0、4.0 g时,快速酸化的趋势相同.0.5 g的加硫量显示出略微慢的酸化速率,最后达到的最低pH在1.2左右,其他三个都降至1.0以下.污泥质量分数在0.5%、1.0%、2.0%、3.0%、4.0%时,也具有相同的酸化趋势,0.5%质量分数的污泥下降速率最快,这与较低浓度下污泥对pH的缓冲能力较小有关;曝气强度在0.45 L/min和0.3 L/min差别较小,5 d内能迅速降低pH,0.2 L/min的酸化速率较慢,足够长的时间(12 d)也能将pH降至2.5左右,0.1 L/min的曝气强度的酸化速率最慢,不能达到预期的酸化效果.  相似文献   
4.
A novel joint method of bioleaching with Fenton oxidation was applied to condition sewage sludge. The specific resistance to filtration (SRF) and moisture of sludge cake (MSC) were adopted to evaluate the improvement of sludge dewaterability. After 2-day bioleaching, the sludge pH dropped to about 2.5 which satisfied the acidic condition for Fenton oxidation. Meanwhile, the SRF declined from 6.45 × 1010 to 2.07 × 1010 s2/g, and MSC decreased from 91.42% to 87.66%. The bioleached sludge was further conditionedwith Fenton oxidation. From an economical point of view, the optimal dosages of H2O2 and Fe2+ were 0.12 and 0.036 mol/L, respectively, and the optimal reaction time was 60 min. Under optimal conditions, SRF, volatile solids reduction, and MSC were 3.43 × 108 s2/g, 36.93%, and 79.58%, respectively. The stability and settleability of sewage sludge were both improved significantly. Besides, the results indicated that bioleaching-Fenton oxidation was more efficient in dewatering the sewage sludge than traditional Fenton oxidation. The sludge conditioningmechanisms by bioleaching-Fenton oxidationmight mainly include the flocculation effects and the releases of extracellular polymeric substances-bound water and intercellular water.  相似文献   
5.
Bioleaching from soil artificially contaminated with analogues of radionuclides, Co and Sr, was carried out using a Fe-oxidizing bacterium, Acidithiobacillus ferrooxidans. Due to bacterial metabolism, the pH and dissolved Fe3+ concentration in a biotic slurry decreased and increased respectively, over time, but the concentrations of Co and Sr extracted from the soil showed no significant enhancement compared with those under abiotic control. In both cases, Co and Sr were leached from the soil during the initial period of the experiment, due to the initially low solution pH of 2.0, and the dissolved concentrations remained almost constant for the duration of the experiment (300 h). Since oxidation of Fe2+ by A. ferrooxidans led to the production of Fe precipitates and colloidal suspensions, the Co and Sr extracted into solution were most likely re-adsorbed onto the Fe solids. Also, A. ferrooxidans, without an external supply of Fe2+, extracted almost equal or greater amounts of Co and Sr from the soil than when Fe2+ was supplied. Under the same leaching conditions, the extent of Sr removal was much lower than that of Co. On the contrary to the high efficiency of microbial metal leaching in biohydrometallurgy for low-graded sulfide ores, which has been widely documented, conventional bioleaching techniques with A. ferrooxidans supplied with enough Fe2+ showed low efficiency for the removal of radionuclides loosely bound onto soil particle surfaces.  相似文献   
6.
Bioremediation of arsenic contaminated soils and groundwater shows a great potential for future development due to its environmental compatibility and possible cost-effectiveness. It relies on microbial activity to remove, mobilize, and contain arsenic through sorption, biomethylation–demethylation, complexation, coprecipitation, and oxidation–reduction processes. This paper gives an evaluation on the feasibility of using biological methods for the remediation of arsenic contaminated soils and groundwater. Ex-situ bioleaching can effectively remove bulk arsenic from contaminated soils. Biostimulation such as addition of carbon sources and mineral nutrients can be applied to promote the leaching rate. Biosorption can be used either ex-situ or in-situ to remove arsenic from groundwater by sorption to biomass and/or coprecipitation with biogenic solids or sulfides. Introduction of proper biosorbents or microorganisms to produce active biosorbents in-situ is the key to the success of this method. Phytoremediation depends on arsenic-hyperaccumulating plants to remove arsenic from soils and shallow groundwater by translocating it into plant tissues. Engineering genetic strategies can be employed to increase the arsenic-hyperaccumulating capacity of the plants. Biovolatilization may be developed potentially as an ex-situ treatment technology. Further efforts are needed to focus on increasing the volatilization rate and the post-treatment of volatilization products.  相似文献   
7.
Microbial mobilization and immobilization processes can affect the bioavailability and mobility of metals thereby influencing their toxicity and can therefore be utilized to treat solid and liquid wastes contaminated by metals. However, the microbial mobilization and immobilization of metals depends on the microbial metabolism, the environment conditions. In this review, mobilization and immobilization of metals are discussed with regard to the presence and function of involved microorganisms and in relation to applications such as bioleaching. Furthermore, the biosorption process is evaluated as a possible approach for microbial immobilization of metal on the basis of four mechanisms:(1) physical adsorption,(2) ion exchange,(3) complexation, and(4) microprecipitation. In addition, sulfide precipitation by sulfate reducing bacteria was included as an example of an application of microbial immobilization. Based on the evaluation and recommendations in this paper, bioremediation strategies for metals can be improved thus increasing the opportunity for field applications.  相似文献   
8.
用污泥加硫酸化液沥滤镍镉电池中的重金属是一种全新的工艺,该工艺主要由生物酸化反应器和金属沥滤反应器两个反应器组成.生物酸化反应器中产生的酸液就是沥滤电池中重金属的反应液.研究表明,酸化液在沥滤反应池的停留时间对沥滤的效果有显著影响.在1、4、7、12 d 4个停留时间中,4 d的效果是最好的,对金属Cd和Ni都用40 d左右基本实现了全部滤除;1d略微慢一些,Cd用了40 d,Ni用了45 d;7 d和12 d的沥滤时间都长于50 d.4 d产生的金属废液量是1 d的1/4,考虑到后续处理金属沥滤废液的工作量,选择4d的停留时间要优于1d.  相似文献   
9.
生物沥浸法去除猪粪中重金属和提高其脱水性能研究   总被引:5,自引:1,他引:4  
采用复合嗜酸性硫杆菌,通过摇瓶试验研究了不同Fe2+添加量下生物沥浸对含固率为3%的猪粪中重金属的去除和脱水性能的影响.同时,考察了不间处理的pH、氧化还原电位(ORP)、Fe2+、Fe3+、总Fe、Cu、Zn、比阻和毛细吸水时间(CST)的变化.结果表明,采用生物沥浸技术能有效地去除猪粪中的重金属,随着Fe2+添加量...  相似文献   
10.
A novel joint method of bioleaching with Fenton oxidation was applied to condition sewage sludge. The specific resistance to filtration(SRF) and moisture of sludge cake(MSC) were adopted to evaluate the improvement of sludge dewaterability. After 2-day bioleaching, the sludge p H dropped to about 2.5 which satisfied the acidic condition for Fenton oxidation.Meanwhile, the SRF declined from 6.45 × 1010 to 2.07 × 1010s2/g, and MSC decreased from91.42% to 87.66%. The bioleached sludge was further conditioned with Fenton oxidation. From an economical point of view, the optimal dosages of H2O2 and Fe2+were 0.12 and 0.036 mol/L,respectively, and the optimal reaction time was 60 min. Under optimal conditions, SRF,volatile solids reduction, and MSC were 3.43 × 108s2/g, 36.93%, and 79.58%, respectively. The stability and settleability of sewage sludge were both improved significantly. Besides,the results indicated that bioleaching-Fenton oxidation was more efficient in dewatering the sewage sludge than traditional Fenton oxidation. The sludge conditioning mechanisms by bioleaching-Fenton oxidation might mainly include the flocculation effects and the releases of extracellular polymeric substances–bound water and intercellular water.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号