首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   314篇
  免费   5篇
  国内免费   20篇
安全科学   6篇
废物处理   78篇
环保管理   59篇
综合类   109篇
基础理论   9篇
污染及防治   44篇
评价与监测   28篇
社会与环境   4篇
灾害及防治   2篇
  2023年   4篇
  2022年   3篇
  2021年   6篇
  2020年   9篇
  2019年   3篇
  2018年   4篇
  2017年   5篇
  2016年   6篇
  2015年   8篇
  2014年   40篇
  2013年   23篇
  2012年   15篇
  2011年   12篇
  2010年   6篇
  2009年   10篇
  2008年   16篇
  2007年   25篇
  2006年   20篇
  2005年   19篇
  2004年   20篇
  2003年   19篇
  2002年   11篇
  2001年   12篇
  2000年   8篇
  1999年   10篇
  1998年   10篇
  1997年   3篇
  1996年   2篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1991年   1篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
排序方式: 共有339条查询结果,搜索用时 15 毫秒
1.
危险废物安全填埋场应探讨企业化经营模式。在单一处理模式、一体化经营模式和依托于大型企业模式中选择适宜的模式。填埋场建设资金筹集渠道中,由废物产生单位集资建设是可行办法。探讨了填埋场收费标准的计算方法,并给出计算公式。  相似文献   
2.
预浓缩与GC-MS联用分析垃圾填埋场恶臭气体   总被引:2,自引:1,他引:1  
采用预浓缩与气相色谱-质谱联用,建立了垃圾填埋场几种恶臭气体的分析方法。该法用SUMMA罐采集垃圾填埋场臭气,经预浓缩系统冷凝浓缩后,用GC-MS分析测定。几种臭气的检出限均低于3.0×10-3mg/m3,经6次重复测定,其相对标准偏差低于10%。该法已用于西安市江村沟垃圾填埋场臭气的采样分析。该法的应用增强了西安市对臭气的监测分析能力。  相似文献   
3.
北京某垃圾填埋区空气细菌浓度及粒径分布特征   总被引:3,自引:0,他引:3  
以北京市某垃圾填埋区中作业区和覆盖区的空气细菌为主要研究对象,研究四个季节空气细菌浓度及粒径分布特征,得出了以下结论:垃圾填埋区作业区空气细菌浓度四季变化特征较覆盖区显著,且空气细菌浓度高于覆盖区。垃圾填埋区作业区和覆盖区四季的空气细菌粒子主要分布在前4级中,且在第Ⅵ级(<1.0μm)中分布比例最小,但分布规律不完全相同。秋季作业区最易感染人体的空气细菌浓度最高。垃圾填埋区作业区和覆盖区空气细菌中值直径最小值均出现在夏季,最大值均出现在冬季。  相似文献   
4.
ABR反应器的设计   总被引:1,自引:0,他引:1  
童健  陈晓华 《环境科技》2004,17(4):26-27
类似于多个UASB反应器串联起来运行的ABR反应器具有多种其它反应器不具备的优点,在处理化工颜料黄高盐生产废水的工程中,结合将高效复合微生物技术用于厌氧水解一连续曝气生化工艺取得成功;对ABR反应器而言,正确的设计参数是工程运行成功的保证。  相似文献   
5.
城市垃圾渗滤液氨氮吹脱研究   总被引:24,自引:3,他引:24  
本文从相平衡与气液传质速率两方面对城市垃圾渗滤液 NH+4-N吹脱工艺的主要影响因素进行了理论分析 ,并在 Φ75 0 mm填料塔中对渗滤液的 p H值、喷淋密度以及液气比进行了实验研究 ,获得了适宜的操作条件。  相似文献   
6.
Municipal solid waste (MSW) landfills are one of the major sources of offensive odors potentially creating annoyance in adjacent communities. At the end of May 2007, an odor pollution incident occurred at the Tianziling landfill site, Hangzhou, China, where the residents lodged complaints about the intense odor from the landfill, which drew a significant attention from the government. In this study, ambient air monitoring was conducted at the Tianziling landfill site. The main odor composition of the gas samples collected on June 1st 2007 and the reduction of various odorous gases from the samples collected on June 1st 2009 due to the applied odor control techniques were determined using gas chromatography-mass spectrometry (GC-MS). In addition, variations of primary odorous gaseous (NH3 and H2S) concentrations at different locations in the landfill site from July 2007 to June 2009 were also investigated by using classical spectrophotometric methods. Results showed that a total of 68 volatile compounds were identified among which H2S (56.58-579.84 μg/m3) and NH3 (520-4460 μg/m3) were the notable odor components contributing to 4.47-10.92% and 83.91-93.94% of total concentrations, respectively. Similar spatial and temporal shifts of H2S and NH3 concentrations were observed and were significantly affected by environmental factors including temperature, air pressure and wind direction. Odor pollution was worse when high temperature, high humidity, low air pressure, and southeast, northeast or east wind appeared. Moreover, the environmental sampling points of the dumping area and the leachate treatment plant were found to be the main odor sources at the Tianziling landfill site. The odor control technologies used in this project had a good mitigating effect on the primary odorous compounds. This study provides long-term valuable information concerning the characteristics and control of odors at landfill sites in a long run.  相似文献   
7.
Landfill leachate treatment methods: A review   总被引:19,自引:0,他引:19  
Landfilling of municipal waste is still a major issue of the waste management system in Europe. The generated leachate must be appropriately treated before being discharged into the environment. Technologies meant for leachate treatment can be classified as follows (i) biological methods, (ii) chemical and physical methods. Here we review briefly the main processes currently used for the landfill leachates treatments.  相似文献   
8.
The key aspects of landfill operation that remain unresolved are the extended timescale and uncertain funding of the post-closure period. This paper reviews the topic and proposes an economic instrument to resolve the unsustainable nature of the current situation. Unsustainability arises from the sluggish degradation of organic material and also the slow flushing of potential pollutants that is exacerbated by low-permeability capping. A landfill tax or aftercare provision rebate is proposed as an economic instrument to encourage operators to actively advance the stabilization of landfilled waste. The rebate could be accommodated within existing regulatory and tax regimes and would be paid for: (i) every tonne of nitrogen (or other agreed leachate marker) whose removal is advanced via the accelerated production and extraction of leachate; (ii) every tonne of non-commercially viable carbon removed via landfill gas collection and treatment. The rebates would be set at a level that would make it financially attractive to operators and would encourage measures such as leachate recirculation, in situ aeration, and enhanced flushing. Illustrative calculations suggest that a maximum rebate of up to ~€50/tonne MSW would provide an adequate incentive.  相似文献   
9.
A case study of landfill liquids addition using small diameter (5 cm) vertical wells is reported. More than 25,000 m3 of leachate was added via 134 vertical wells installed 3 m, 12 m, and 18 m deep over five years in a landfill in Florida, US. Liquids addition performance (flow rate per unit screen length per unit liquid head) ranged from 5.6 × 10?8 to 3.6 × 10?6 m3 s?1 per m screen length per m liquid head. The estimated radial hydraulic conductivity ranged from 3.5 × 10?6 to 4.2 × 10?4 m s?1. The extent of lateral moisture movement ranged from 8 to 10 m based on the responses of moisture sensors installed around vertical well clusters, and surface seeps were found to limit the achievable liquids addition rates, despite the use of concrete collars under a pressurized liquids addition scenario. The average moisture content before (51 samples) and after (272 samples) the recirculation experiments were 23% (wet weight basis) and 45% (wet weight basis), respectively, and biochemical methane potential measurements of excavated waste indicated significant (p < 0.025) decomposition.  相似文献   
10.
• Upgrade process was investigated in a full-scale landfill leachate treatment plant. • The optimization of DO can technically achieve the shift from CND to PND process. • Nitrosomonas was mainly responsible for ammonium oxidation in PND system. • An obviously enrichment of Thauera was found in the PND process. • Enhanced metabolic potentials on organics was found during the process update. Because of the low access to biodegradable organic substances used for denitrification, the partial nitrification-denitrification process has been considered as a low-cost, sustainable alternative for landfill leachate treatment. In this study, the process upgrade from conventional to partial nitrification-denitrification was comprehensively investigated in a full-scale landfill leachate treatment plant (LLTP). The partial nitrification-denitrification system was successfully achieved through the optimizing dissolved oxygen and the external carbon source, with effluent nitrogen concentrations lower than 150 mg/L. Moreover, the upgrading process facilitated the enrichment of Nitrosomonas (abundance increased from 0.4% to 3.3%), which was also evidenced by increased abundance of amoA/B/C genes carried by Nitrosomonas. Although Nitrospira (accounting for 0.1%–0.6%) was found to stably exist in the reactor tank, considerable nitrite accumulation occurred in the reactor (reaching 98.8 mg/L), indicating high-efficiency of the partial nitrification process. Moreover, the abundance of Thauera, the dominant denitrifying bacteria responsible for nitrite reduction, gradually increased from 0.60% to 5.52% during the upgrade process. This process caused great changes in the microbial community, inducing continuous succession of heterotrophic bacteria accompanied by enhanced metabolic potentials toward organic substances. The results obtained in this study advanced our understanding of the operation of a partial nitrification-denitrification system and provided a technical case for the upgrade of currently existing full-scale LLTPs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号