首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   0篇
  国内免费   2篇
废物处理   2篇
环保管理   6篇
综合类   6篇
污染及防治   16篇
评价与监测   1篇
  2020年   2篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2014年   1篇
  2013年   4篇
  2012年   2篇
  2011年   4篇
  2009年   2篇
  2008年   6篇
  2007年   2篇
  2006年   2篇
  2005年   2篇
  2003年   1篇
排序方式: 共有31条查询结果,搜索用时 15 毫秒
1.
Land application of contaminated waste products has been defended as beneficial use by some scientists and regulators, based on the premise that the behavior of any toxins accumulated in soils from this practice is reasonably well understood and will not have detrimental agronomic or environmental impacts into the foreseeable future. In this review, I use the case of toxic metals in sewage sludges applied to agricultural land to illustrate that metal behavior in soils and plant uptake is difficult to generalize because it is strongly dependent on the nature of the metal, sludge, soil properties and crop. Nevertheless, permitted agricultural loadings of toxic metals from sewage sludges are typically regulated using the sole criterion of total metal loading or concentrations in soils. Several critical generalizing assumptions about the behavior of sludge-borne metals in soil-crop systems, built into the US EPA risk assessment for metals, have tended to underestimate risks and are shown not to be well justified by published research. It is argued that, in the absence of a basic understanding of metal behavior in each specific situation, a more precautionary approach to toxic metal additions to soils is warranted.  相似文献   
2.
生物固体主要指城市污水污泥和部分生活垃圾,其丰富的有机质和干化固化后的稳定性,为应用于高速公路提供了条件。中文介绍了生物固体在路面结构填充和土地施肥复垦两方面的应用方式,并对应用过程中的环境风险及对策进行分析,最后提出应用前景展望。  相似文献   
3.
Strategies for beneficial use of biosolids in New Zealand and elsewhere are currently focused primarily on land application. The long-term success of these and other strategies is dependent not only on technical factors, but also on their environmental, economic, social and cultural sustainability. This paper briefly reviews the situation with respect to biosolids management in New Zealand, where land application is not yet widespread; the rise in public opposition to land application in the United States; and the biosolids industry's approach to public engagement. We argue that, at least until recently, the industry has misinterpreted the nature and meaning of public opposition and thus substituted public relations for public engagement. We argue that genuine public engagement is necessary and that its purpose cannot be to gain public acceptance for an already-decided-upon strategy. It therefore calls for humility among biosolids managers, including a willingness to open up the framing of 'the problem', to acknowledge areas of uncertainty, and to recognise the role of values in 'technical' decision-making. We then present and analyse an example of the use of the scenario workshop process for public participation in biosolids management policy in Christchurch, New Zealand, and conclude that scenario workshops and related methods represent an opportunity to enhance sustainable waste management when certain conditions are met.  相似文献   
4.
Guerra P  Ahumada I  Carrasco A 《Chemosphere》2007,68(11):2021-2027
Biosolid application to soil may be a supply of nutrients and micronutrients but it may also accumulate toxic compounds which would be absorbed by crops and through them be incorporated to the trophic chain.

The present study deals with the effect of biosolid application on Cr, Cu, Pb, Ni, and Zn in agricultural soils. The procedure used is sequential extraction so that the availability of those metals may be estimated and related to their bioavailability as determined through two indicator plants grown in greenhouse: ryegrass (Lolium perenne L.) and red clover (Trifolium pratense). Results showed that biosolid application to soil increased total Cu and Zn content. Sequential extraction showed that the more labile Zn fractions increased after biosolid application to soil. This was confirmed when assessing the total content of this metal in shoot and root of the plants under study, since a higher content was found in plant tissues, while no significant differences were found for Cu, Cr, Ni, and Pb.  相似文献   

5.
Over three million dry metric tons of biosolids produced in the United States are land applied as Class B. Lime stabilization is employed for biosolids treatment at approximately 20% of the wastewater treatment plants because it is a simple and inexpensive process. During lime stabilization, the pH of sewage sludge is raised above 12 for pathogen inactivation and odor reduction. Lime dose and mixing have been found to greatly reduce odor generation from lime stabilized biosolids. A better quality biosolids product is less likely to create public opposition to land application programs. In this study, land application tests using Class B biosolids were conducted in order to determine whether better mixing can reduce odor generation during the land application of lime stabilized biosolids. The mixing quality of a treatment plant’s lime stabilized biosolids was improved by relocating the lime addition point, which prolonged the mixing time and produced a better mixed biosolids product. Based on field observations of land application, the poorly mixed biosolids were more odorous and offensive prior to incorporation. However, once incorporated into the soil, there was no appreciable odor difference between the biosolids. Another land application study was conducted to assess the odor of unincorporated Class A biosolids and compare it with incorporated Class A biosolids with the soil.  相似文献   
6.
This study modeled the impact on freshwater ecosystems of pharmaceuticals detected in biosolids following application on agricultural soils. The detected sulfonamides and hydrochlorothiazide displayed comparatively moderate retention in solid matrices and, therefore, higher transfer fractions from biosolids to the freshwater compartment. However, the residence times of these pharmaceuticals in freshwater were estimated to be short due to abiotic degradation processes. The non-steroidal anti-inflammatory mefenamic acid had the highest environmental impact on aquatic ecosystems and warrants further investigation. The estimation of the solid-water partitioning coefficient was generally the most influential parameter of the probabilistic comparative impact assessment. These results and the modeling approach used in this study serve to prioritize pharmaceuticals in the research effort to assess the risks and the environmental impacts on aquatic biota of these emerging pollutants.  相似文献   
7.
The effects of biosolids,ZnO,and ZnO/biosolids on soil microorganism and the environmental fate of coexisting racemic–quizalofop–ethyl(rac-QE) were investigated.Microbial biomass carbon in native soil,soil/biosolids decreased by 62% and 52% in the presence of ZnO(2‰,weight ratio).The soil bacterial community structure differed significantly among native soil,soil/biosolids,soil/ZnO,and soil/biosolids/ZnO based on a principal co-ordinate analysis(PCo A) of OTUs and one-way ANOVA test of bacterial genera.Chemical transformation caused by ZnO only contributed 4% and 3% of the overall transformation of R-quizalofop-ethyl(R-QE) and S-quizalofop-ethyl(S-QE) in soil/ZnO.The inhibition effect of ZnO on the initial transformation rate of R-QE(rR-QE) and S-QE(rR-QE) in soil only observed when enantiomer concentration was larger than 10 mg/kg.Biosolids embedded with ZnO(biosolids/ZnO) caused a 17%–42% and 22%–38% decrease of rR-QEand rS-QE,although rR-QEand rS-QEincreased by 0%–17% and 22%–58% by the addition of biosolids.The results also demonstrated that the effects of biosolids on agricultural soil microorganism and enantioselective transformation of chiral pesticide was altered by the embedded nanoparticles.  相似文献   
8.
Sewage sludge addition to agricultural lands requires judicious management to avoid environmental risks arising from heavy metal and nitrate contamination of surface water and accumulation in edible plants. A field study was conducted on a silty-loam soil of 10% slope at Kentucky State University Research Farm. Eighteen plots of 22 × 3.7 m each were separated using metal borders and the soil in six plots was mixed with sewage sludge and yard waste compost mix (SS-YW) at 15 t acre?1, six plots were mixed with sewage sludge (SS) at 15 t acre?1, and six unamended plots that never received sludge were used for comparison purposes. Plots were planted with eggplant, Solanum melongena L. as the test plant. The objectives of this investigation were to: 1) assess the effect of soil amendments on the transport of NO3, NH4, and heavy metals (Cd, Cr, Ni, Pb, Zn, Cu, and Mo) into surface water; 2) investigate the effect of soil amendments on heavy metal bioavailability in eggplant fruits at harvest; and 3) assess chemical and physical properties of soil following addition of soil amendments and their impact on the yield and quality of eggplant fruit. SS-YW treatments reduced runoff water by 63% while plots incorporated with sewage sludge alone reduced runoff water by 37% compared to control treatment. The SS-YW treatments transported more mineral nitrogen (NO3-N and NH4-N) in runoff water than SS treatments. Total marketable yield (lbs acre?1) and number of eggplant fruits were greatest in SS-YW treatments. This response may be due to improved soil porosity, water, and nutrient retention of the soil amended with SS-YW mixture. Concentrations of heavy metals in soil amended with sludge were below the U.S. Environmental Protection Agency (USEPA) limits. Chromium, Ni, Zn, and Cu were taken up by eggplant fruits but their concentrations were below the Codex Commission allowable levels.  相似文献   
9.
Mendoza C  Assadian NW  Lindemann W 《Chemosphere》2006,63(11):1933-1941
The determination of nitrogen (N) based loading rates for land application of biosolids is challenging and site specific. Over loading may contribute to environmental, agricultural, or human health problems. The objective of this study was to monitor N mineralization and losses in a moderately alkaline and calcareous desert soil amended with either anaerobically digested (AN) or lime-stabilized (LS) biosolids, and irrigated with and without urea enriched water. For Experiment 1, N inputs, leaching and residuals in soil were evaluated in an open soil column system. For Experiment 2, ammonia (NH3) emissions were evaluated in a closed soil column system. In Experiment 1, AN and LS biosolids increased soil ON (organic N) by three and two fold, respectively. Respective net N mineralization of ON from biosolids alone was 90% and 62% without urea, and 71% and 77%, respectively with added urea. Nitrogen leaching losses and residuals in amended soil did not account for all N inputs into the soil/biosolids system. In Experiment 2, NH3 emissions were not significantly different among treated soils with or without added urea, except LS amended soil receiving urea. Ammonia losses did not account for unaccounted N in Experiment 1. We concluded that deep placement and rapid mineralization of AN biosolids promoted anaerobic soil conditions and denitrification, in addition to the high denitrification potential of desert soil. LS biosolids showed greater potential than AN biosolids for safe and beneficial land application to desert soils regardless of biosolids placement and the inclusion of N rich irrigation water.  相似文献   
10.
The Surface Mining Control and Reclamation Act of 1977 requires that coal mine sites in the United States be reclaimed to establish vegetative cover that is diverse, native, and capable of plant succession. However, there is a question as to whether vegetation established on coal mine sites reclaimed with biosolids is diverse and capable of plant succession. The influx of nutrients with the addition of biosolids leads to long-term dominance by early-successional species, most notably grasses, and consequently, a low establishment of woody and volunteer species. Additionally, many grass species commonly planted in reclamation have aggressive growth habits that lead to their dominance in coal mine plant communities. The establishment and growth of selected grass mixes was evaluated to determine whether alternative grass mixes would be less competitive with woody and volunteer species as compared to commonly used grass mixes. Percent vegetative cover, species richness, and the survival of direct-seeded woody species were assessed for each treatment grass mixture. It was found that Poa compressa and a mixture of P. compressa, Panicum virgatum, and Trifolium repens provided adequate coverage while still allowing the highest species richness and survival of woody species. Use of these species mixtures in coal mine reclamation with biosolids in the eastern United States would likely lead to establishment of a more species-rich plant community with a greater woody species component while still providing erosion control and site protection.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号