首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34篇
  免费   0篇
  国内免费   1篇
安全科学   1篇
环保管理   7篇
综合类   6篇
基础理论   15篇
污染及防治   5篇
评价与监测   1篇
  2022年   1篇
  2015年   1篇
  2013年   1篇
  2012年   1篇
  2011年   6篇
  2010年   7篇
  2009年   2篇
  2008年   5篇
  2007年   1篇
  2006年   4篇
  2002年   1篇
  2000年   1篇
  1993年   1篇
  1988年   1篇
  1987年   1篇
  1981年   1篇
排序方式: 共有35条查询结果,搜索用时 15 毫秒
1.
Using a case study of the Lake Abitibi Model Forest (LAMF), this study aims to assess the temporal and spatial variability in carbon storage during 1990–2000, and to present a comprehensive estimation of the carbon budget for LAMF's ecosystems. As well, it provided the information needed by local forest managers to develop ecological and carbon-based indicators and monitor the sustainability of forest ecosystems. Temporal and spatial carbon dynamics were simulated at the landscape level using ecosystem model TRIPLEX1.0 and Geographical Information System (GIS). The simulated net primary productivity (NPP) and carbon storage in forest biomass and soil were compared with field data and results from other studies for Canada's boreal forests. The results show that simulated NPP ranged from 3.26 to 3.34 tC ha−1 yr−1 in the 1990s and was consistent with the range measured during the Boreal Ecosystem-Atmosphere Studies (BOREAS) in central Canada. Modeled NPP was also compared with the estimation from remote sensing data. The density of total above-and belowground biomass was 125.3, 111.8, and 106.5 tC ha−1 for black spruce, trembling aspen, and jack pine in the LAMF ecosystem, respectively. The total carbon density of forested land was estimated at 154.4 tC ha−1 with the proportion of 4:6 for total biomass and soil. The analysis of net carbon balance of ecosystem suggested that the LAMF forest ecosystem was acting as a carbon sink with an allowable harvest in the 1990s.  相似文献   
2.
The aim of this study was to explore how atmospherically derived soil pollution is affected by environmental processes at two typical boreal catchment landscape type settings: wetlands and forested areas. Measurements of hydrophobic organic compounds (HOCs) in forest soil and peat from an oligotrophic mire at various depths were performed at a remote boreal catchment in northern Sweden. HOCs in peat were evenly distributed throughout the body of the mire while levels of HOCs in the forest soil increased with increased amount of organic matter. Evaluation of HOC composition by principal component analysis (PCA) showed distinct differences between surface soils and deeper soil and peat samples. This was attributed to vertical transport, degradation and/or shifting sources over time. The calculated net vertical transport differed between surface layers (0.3%) and deeper soils (8.0%), suggesting that vertical transport conditions and processes differ in the deeper layers compared to the surface layers.  相似文献   
3.
Niche theory with hypotheses on shape and distribution of ecological response curves is used in the studies of resource sharing of competing plant species. Predictions based on theory should be applicable when, e.g., effects of competing species on the ecological tolerances are assessed or species’ diversity along a resource gradient is evaluated. We studied the ecological response curves of competing plant species along a resource gradient in boreal forests. The study was based on nation-wide soil and vegetation data collected from 455 sample plots on boreal forests in Finland. Species response curves along a soil fertility gradient (in terms of C/N ratio) were estimated using generalized additive models. Distribution of species optima and the relationship of niche width and skewness to the location of the optimum were analyzed with new bootstrap tests. The developed tests can account for the effects of truncation observed in the response curves of several species and for the uneven distribution of observations on the gradient.The estimated response curves of the major field layer species of boreal forests were not evenly distributed along soil C/N gradient. The density of optima peaked with relatively high nitrogen availability. Species with optima at low nitrogen availability had relatively broad realized niches. Niche width was negatively correlated with the density of optima. Species optima were packed and niches were narrow at high resource levels. This result suggests that a greater number of more specialized species can occur and interspecific competition decreases niche widths at high resource levels. Species were packed in the gradient where the C/N ratio was lower than 25, i.e., in conditions where nitrification can take place. This indicates that the majority of the vascular plants of boreal forests are favoured by the availability of NO3. Those few species thriving at high C/N ratios have broader realized niches.  相似文献   
4.
Visual Aesthetic Quality of Northern Ontario's Forested Shorelines   总被引:1,自引:0,他引:1  
Only a few empirical studies on forest aesthetics have adopted a water-based perspective for observers and have investigated the perceived visual quality of forested shorelines. In forested environments with many lakes, such as the boreal forest in the Canadian Shield, individuals have greater exposure to forests from water-based rather than in-stand vantage points. This study employed the psychophysical research direction to explore the relationships between scenic beauty and biophysical characteristics of the forested shorelines in the boreal forests. Two model forms were tested. One model related the variation of shoreline forest aesthetic evaluations of near-vista views (140 m offshore) to a set of forest mensuration data. Tree size, tree mortality, conifer shrubs, tree density, amount of hardwood, and slope explained 60.2% of the variance in scenic beauty between the study sites. A second model was calibrated to test the relationship between an already existing ecosystem vegetation classification system and the aesthetic evaluations of the same forested shorelines. When the ecosystem classification was simplified to eight groups, the model explained 48.5% of variance. These models suggest that the psychophysical approach to studying aesthetics can be applied successfully to near-vista evaluations of scenic beauty. The finding that a forest ecosystem classification system is highly related to scenic beauty suggests that, at least in the boreal forest, managers can reasonably estimate the scenic beauty of forested shoreline environments from an ecosystem classification, with little need for intensive data on these sites.  相似文献   
5.
Over 14 million hectares of erosion prone cropland in the United States has been converted into grasslands through the Conservation Reserve Program (CRP) administered by the United States Department of Agriculture, however, studies of the effects of CRP enrollment on plant communities and subsequent plant succession are largely lacking. In Delta Junction, Alaska plant communities in CRP fields are transitioning from grasslands to shrub dominated plant communities, which are resulting in compliance problems with program regulations that state “fields must be maintained in a condition that permits easy conversion to cropland”. To determine plant succession and how previous land management and soils might influence the transition, we measured plant populations in 20 CRP fields throughout Delta Junction using modified-Whittaker plots. These data were combined with data on current management practices, previous farming history, soils, soil properties, diversity indices, and time since land was cleared and analyzed with nonmetric multidimensional scaling ordination to determine factors that influence plant succession. Time in the CRP was the only factor consistently influencing plant succession. As time in the CRP increased, the planted introduced grasses brome grass (Bromus inermis) and red fescue (Festuca rubra) and the native pteridophyte (Equisetum arvense) decreased, whereas a native grass (Calamigrostis canadensis), five native forb, two native shrub, and three native tree species increased. Plant diversity increased at a rate of more than 2 species per 1000 m2 per year. Regression analyses of plant species and plant groups using time in the CRP as the dependent variable resulted in the identification of outlier CRP fields with significantly more or less than expected covers of vegetation. All fields with these outliers had reasonable explanations for the differences in cover that were unrelated to the overall rate of plant succession. Current management practices will result in incompliant fields and different management practices that result in woody vegetation control is key to maintaining CRP fields in compliance.  相似文献   
6.
This article focuses on modelling above and below-ground mass loss and nitrogen (N) dynamics based on the wooden dowels (Gonystylus bancanus [Miq.] Kurz) of the decadal Long-term Intersite Decomposition Experiment (LIDET) data. These dowels were placed at 27 locations across North and Central America, involving tropical, temperate and boreal forests, grasslands, wetlands and the tundra. The dowel, inserted vertically into the soil with one half remaining exposed to the air, revealed fast mass and N losses under warm to humid conditions, and slow losses under wet as well as cold to dry conditions. The model formulation, referred to as the Wood Decomposition Model, or WDM, related these losses to (i) mean annual precipitation, mean monthly January and July air temperatures, and (ii) mean annual actual evapotranspiration (AET) at each location. The resulting calibrations conformed well to the time-in-field averages for mass remaining by location: R2 = 0.83 and 0.90 for the lower and upper parts, respectively. These values dropped, respectively, to 0.41 and 0.55 for the N concentrations, and to 0.28 and 0.43 for N remaining. These reductions likely refer to error propagation and to as yet unresolved variations in N transference into and out of the wood specific to each individual dowel location. Recalibrating the model parameters by ecosystem type reduced the R2 values for actual versus best-fitted mass loss by about 0.15. Doing the same without location- or ecosystem-specific adjustments reduced the R2 values further, by about 0.3.  相似文献   
7.
Spatially and temporally distributed information on the sizes of biomass carbon (C) pools (BCPs) and soil C pools (SCPs) is vital for improving our understanding of biosphere-atmosphere C fluxes. Because the sizes of C pools result from the integrated effects of primary production, age-effects, changes in climate, atmospheric CO2 concentration, N deposition, and disturbances, a modeling scheme that interactively considers these processes is important. We used the InTEC model, driven by various spatio-temporal datasets to simulate the long-term C-balance in a boreal landscape in eastern Canada. Our results suggested that in this boreal landscape, mature coniferous stands had stabilized their productivity and fluctuated as a weak C-sink or C-source depending on the interannual variations in hydrometeorological factors. Disturbed deciduous stands were larger C-sinks (NEP2004 = 150 gC m−2 yr−1) than undisturbed coniferous stands (e.g. NEP2004 = 8 gC m−2 yr−1). Wetlands had lower NPP but showed temporally consistent C accumulation patterns. The simulated spatio-temporal patterns of BCPs and SCPs were unique and reflected the integrated effects of climate, plant growth and atmospheric chemistry besides the inherent properties of the C pool themselves. The simulated BCPs and SCPs generally compared well with the biometric estimates (BCPs: r = 0.86, SCPs: r = 0.84). The largest BCP biases were found in recently disturbed stands and the largest SCP biases were seen in locations where moss necro-masses were abundant. Reconstructing C pools and C fluxes in the ecosystem in such a spatio-temporal manner could help reduce the uncertainties in our understanding of terrestrial C-cycle.  相似文献   
8.
Fire regimes result from reciprocal interactions between vegetation and fire that may be further affected by other disturbances, including climate, landform, and terrain. In this paper, we describe fire and fuel extensions for the forest landscape simulation model, LANDIS-II, that allow dynamic interactions among fire, vegetation, climate, and landscape structure, and incorporate realistic fire characteristics (shapes, distributions, and effects) that can vary within and between fire events. We demonstrate the capabilities of the new extensions using two case study examples with very different ecosystem characteristics: a boreal forest system from central Labrador, Canada, and a mixed conifer system from the Sierra Nevada Mountains (California, USA). In Labrador, comparison between the more complex dynamic fire extension and a classic fire simulator based on a simple fire size distribution showed little difference in terms of mean fire rotation and potential severity, but cumulative burn patterns created by the dynamic fire extension were more heterogeneous due to feedback between fuel types and fire behavior. Simulations in the Sierra Nevada indicated that burn patterns were responsive to topographic features, fuel types, and an extreme weather scenario, although the magnitude of responses depended on elevation. In both study areas, simulated fire size and resulting fire rotation intervals were moderately sensitive to parameters controlling the curvilinear response between fire spread and weather, as well as to the assumptions underlying the correlation between weather conditions and fire duration. Potential fire severity was more variable within the Sierra Nevada landscape and also was more sensitive to the correlation between weather conditions and fire duration. The fire modeling approach described here should be applicable to questions related to climate change and disturbance interactions, particularly within locations characterized by steep topography, where temporally or spatially dynamic vegetation significantly influences spread rates, where fire severity is variable, and where multiple disturbance types of varying severities are common.  相似文献   
9.
The effect of nitrogen on biomass production, shoot elongation and relative density of the mosses Pleurozium schreberi, Hylocomium splendens and Dicranum polysetum was studied in a chamber experiment. Monocultures were exposed to 10 N levels ranging from 0.02 to 7.35 g N m−2 during a 90-day period. All the growth responses were unimodal, but the species showed differences in the shape parameters of the curves. Hylocomium and Pleurozium achieved optimum biomass production at a lower N level than Dicranum. Pleurozium had the highest biomass production per tissue N concentration. Tolerance to N was the widest in Dicranum, whereas Hylocomium had the narrowest tolerance. Dicranum retained N less efficiently from precipitation than the other two species, which explained its deviating response. All species translocated some N from parent to new shoots. The results emphasize that the individual responses of bryophytes to N should be known when species are used as bioindicators.  相似文献   
10.
A methodology for simulating climate change impacts on tree growth was introduced into a statistical growth and yield model in relation to variations in site fertility and location implemented with current temperature sum. This was based on a procedure in which the relative enhancement in stem volume growth was calculated from short-term runs of a physiological simulation model for Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies (L.) Karst.) and silver birch (Betula pendula Roth.) stands. These simulations were made for a set of stands with species-specific variations in stand characteristics, location and fertility type first in current climatic conditions and then in different combinations of CO2 and temperature elevations. Based on these simulations, the relative enhancement of volume growth induced by the climate change (relative scenario effect, RSEv) was calculated and modelled in relation to: (i) CO2 and temperature elevation, stand density and the competition status of the tree in its stand, and (ii) variations in site fertility type and current temperature sum of a stand. Finally, these transfer functions for RSEv were applied to adapt the stem volume growth in the statistical growth and yield model to reflect the response to climate change.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号