首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
环保管理   2篇
  2011年   2篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
Stable carbon isotopes are important tools to assess potential storage sites for CO2, as they allow the quantification of ionic trapping via isotope mass balances. In deep geological formations high p/T conditions need to be considered, because CO2 dissolution, equilibrium constants and isotope fractionation of dissolved inorganic carbon (DIC) depend on temperature, pressure and solute composition. After reviewing different approaches to account for these dependencies, an expanded scheme is presented for speciation and carbon isotope fractionation of DIC and dissolution of CaCO3 for pCO2 up to 100 bar, pH down to 3 and temperatures of up to 200 °C. The scheme evaluates the influence of respective parameters on isotope ratios during CO2 sequestration. The pCO2 and pH are the dominant controlling factors in the DIC/δ13C/pH system. The fugacity of CO2 has major impact on DIC concentrations at temperatures below 100 °C at high pCO2. Temperature dependency of activities and equilibrium dominates at temperatures above 100 °C. Isotope ratios of DIC are expected to be about 1–2‰ more depleted in 13C compared to the free CO2 at pCO2 values above 10 bar. This depletion is controlled by carbon isotope fractionation between CO2 and H2CO3* which is the dominant species of DIC at the resulting pH below 5.  相似文献   
2.
The risk associated with storage of carbon dioxide in the subsurface can be reduced by removal of a comparable volume of existing brines (e.g. Buscheck et al., 2011). In order to avoid high costs for disposal, the brines should be processed into useful forms such as fresh and low-hardness water. We have carried out a cost analysis of treatment of typical subsurface saline waters found in sedimentary basins, compared with conventional seawater desalination. We have also accounted for some cost savings by utilization of potential well-head pressures at brine production wells, which may be present in some fields due to CO2 injection, to drive desalination using reverse osmosis. Predicted desalination costs for brines having salinities equal to seawater are about half the cost of conventional seawater desalination when we assume the energy can be obtained from excess pressure at the well head. These costs range from 32 to 40¢ per m3 permeate produced. Without well-head energy recovery, the costs are from 60 to 80¢ per m3 permeate. These costs do not include the cost of any brine production or brine reinjection wells, or pipelines to the well field, or other site-dependent factors.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号