首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
环保管理   2篇
  1999年   1篇
  1994年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
Experimental short-term desalination and drainage of salt marsh cores in greenhouse microcosms caused Spartina production to increase after one growing season, reflecting decreased salt stress and sulfide toxicity. However, production thereafter declined, likely due to pyrite oxidation and acidification in drained treatments and sulfide accumulation in waterlogged treatments. A survey of longer-term (decadal) effects of diking on peat composition of Cape Cod, Massachusetts, USA, marshes revealed acidification, Fe(II) mobilization, and decreased organic content in drained sites. Despite the aerobic decomposition of organic matter, abundant nutrients remained as sorbed NH4 and mineral-bound PO4. In diked, seasonally waterlogged sites, porewater alkalinity, sulfide, ammonium and orthophosphate were much lower, and organic solids higher, than in adjacent natural marsh. Seawater was added to cores from diked marshes to study the effects of tidal restoration. Salination of the drained peat increased porewater pH, alkalinity, ammonium, orthophosphate, Fe, and Al; copious ammonium N, and Fe(II) for sulfide precipitation favored Spartina growth. Salination of diked–waterlogged peat increased sulfate reduction and caused 6–8 cm of sediment subsidence. The resulting increase in porewater sulfides and waterlogging decreased vigor of transplanted Spartina alterniflora. Results indicate that seawater restoration should proceed cautiously to avoid nutrient loading of surface waters in drained sites or sulfide toxicity in diked–waterlogged marshes.  相似文献   
2.
In France and the United States it has been shown that strong linkages exist between vegetation and alluvial landforms within homogeneous river stretches characterized by geomorphological processes, flood duration, flood magnitude, flood frequency, and sediment size. Furthermore, perturbations induced by man (such as embankments and damming) have been shown to have an effect on both succession and plant distribution patterns. Yet, in numerous cases it is not possible to find either the communities or the plants whose presence might be predicted by reference to the river section characteristics (such as straight, braided, anastomosed, or meandering channels) or by reference to perturbation effects well known in piedmont valleys (such as variations of the water-table depth, variations of magnitude, and frequency and duration of floods). Unexpected species, new communities, and even new successional sequences are often observed. The presence of new alluvial forms explains these differences. An “artificial” substratum generated by an old human perturbation (limited in the time) has been established in the past; consequently, the natural distribution patterns of water and matter flows have been disturbed. Archive research has enabled a classification of abandoned systems that were commonly used during the 16th, 17th, 18th, and 19th centuries on European floodplains. Several case studies were chosen in order to illustrate and explain the importance of stream corridor history. The example of the Isère River valley, downstream from Albertville, is chosen to highlight the heterogeneity of the vegetation mosaïc pattern outside the dikes. The historical reconstruction explains the role of the additional disturbances that cause deviation from the system evolution patterns.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号