首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   94篇
  免费   2篇
  国内免费   8篇
安全科学   36篇
废物处理   3篇
环保管理   4篇
综合类   17篇
基础理论   12篇
污染及防治   20篇
评价与监测   8篇
社会与环境   4篇
  2023年   1篇
  2021年   6篇
  2020年   5篇
  2019年   2篇
  2017年   1篇
  2016年   3篇
  2015年   9篇
  2014年   6篇
  2013年   6篇
  2012年   4篇
  2011年   7篇
  2010年   2篇
  2009年   9篇
  2008年   6篇
  2007年   9篇
  2006年   6篇
  2005年   3篇
  2004年   1篇
  2003年   1篇
  2002年   3篇
  2001年   3篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1984年   1篇
排序方式: 共有104条查询结果,搜索用时 0 毫秒
1.
• A novel and multi-functional clay-based oil spill remediation system was constructed. • TiO2@PAL functions as a particulate dispersant to break oil slick into tiny droplets. • Effective dispersion leads to the direct contact of TiO2 with oil pollutes directly. • TiO2 loaded on PAL exhibits efficient photodegradation for oil pollutants. • TiO2@PAL shows a typical dispersion-photocatalysis synergistic remediation. Removing spilled oil from the water surface is critically important given that oil spill accidents are a common occurrence. In this study, TiO2@Palygorskite composite prepared by a simple coprecipitation method was used for oil spill remediation via a dispersion-photodegradation synergy. Diesel could be efficiently dispersed into small oil droplets by TiO2@Palygorskite. These dispersed droplets had an average diameter of 20–30 mm and exhibited good time stability. The tight adsorption of TiO2@Palygorskite on the surface of the droplets was observed in fluorescence and SEM images. As a particulate dispersant, the direct contact of TiO2@Palygorskite with oil pollutants effectively enhanced the photodegradation efficiency of TiO2 for oil. During the photodegradation process, •O2and •OH were detected by ESR and radical trapping experiments. The photodegradation efficiency of diesel by TiO2@Palygorskite was enhanced by about 5 times compared with pure TiO2 under simulated sunlight irradiation. The establishment of this new dispersion-photodegradation synergistic remediation system provides a new direction for the development of marine oil spill remediation.  相似文献   
2.
During the warm season (March–September), high ozone concentrations have been reported at the coastal and mountain monitoring stations of the eastern Iberia coast (Millán et al., J. Geophys. Res. 102 (D7) 8811, J. Appl. Meteorol. 4 (2000) 487). The vegetation protection threshold of current Directive 92/72/EEC and the World Health Organisation guideline for the protection of crops and semi-natural vegetation are systematically exceeded during the whole period. The main objective of the present study is to search for the origin of these chronic pollution levels: to search for the reason(s) for such high O3 concentrations during such a long period. A mesoscale model is used to reproduce the diurnal cycle of winds and stability/layering over the Western Mediterranean Basin (WMB), at a sufficient space/temporal resolution, under a typical recursive synoptic condition during the warm season: data from the flight tracks of the European Project—Regional Cycles of Air Pollution in the West-Central Mediterranean Area—are used to substantiate the model results. Times of residence and the final distribution of pollutants entering the WMB are estimated using single-particle Lagrangian trajectories and a multiple-particle dispersion model. Our results show that the marine boundary layer and the lower troposphere in the region between the Balearic Islands and eastern Iberia are subject to a flow regime that tends to accumulate pollutants within large circulations, covering the entire western basin. We have also shown a diurnal pulsation of the Tramontana/Mistral wind regime, which can transport new pollutants into the area (background concentrations of 50–65 ppb of O3 of continental European origin) that are added to local emissions and re-circulated within the coastal breezes at eastern Iberia for periods of more than five days. Local emissions and wind configuration contribute to increase the O3 concentrations up to 100 ppb and even more.  相似文献   
3.
升流式厌氧污泥床筛分强度数学模型研究   总被引:1,自引:0,他引:1  
通过对升流式厌氧污泥床的流动分析,提出了用离散数D定量地表示筛分强度。通过实验和回归分析,建立了D与水力负荷(L)和沼气沼气容积产量(G)的数学关系:D=0.0033L+0.045G+0.073。当D在0.088-0.095之间,用生活污水作基质,成功地培养出了颗粒污泥。  相似文献   
4.
本文对山地和丘陵地区中烟羽浓度扩散分布的计算提出一种方法,该方法引用浓度方程的分析解,通过对山地绕流数值计算速度势和流函数,可较简易地求得烟羽浓度分布。作为算例,文中对中条山某工厂烟囟排放的SO2,预测了它在各种风速时被输运扩敢的浓度分布。   相似文献   
5.
We evaluated the Danish AirGIS air quality and exposure model system using air quality measurement data from New York City in the Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air). Measurements were used from three US EPA Air Quality System (AQS) monitoring stations and a comprehensive MESA Air measurement campaign including about 150 different locations and about 650 samples of about 2 week measurements of NOx, NO2 and PM2.5. AirGIS is a deterministic exposure model system based on the dispersion models Operational Street Pollution Model (OSPM) and the Urban Background Model (UBM). The UBM model reproduced the annual levels within 1–26% depending on station and pollutant at the three urban background EPA monitor stations, and generally reproduced well the seasonal and diurnal variation. The full model with OSPM and UBM reproduced the MESA Air measurements with a correlation coefficient of r2 = 0.51 for NOx, r2 = 0.28 for NO2 and r2 = 0.73 for PM2.5.  相似文献   
6.
Source apportionment study of PM10 (Particulate Matter) in a critically polluted area of Jharia coalfield, India has been carried out using Dispersion model, Principle Component Analysis (PCA) and Chemical Mass Balance (CMB) techniques. Dispersion model Atmospheric Dispersion Model (AERMOD) was introduced to simplify the complexity of sources in Jharia coalfield. PCA and CMB analysis indicates that monitoring stations near the mining area were mainly affected by the emission from open coal mining and its associated activities such as coal transportation, loading and unloading of coal. Mine fire emission also contributed a considerable amount of particulate matters in monitoring stations. Locations in the city area were mostly affected by vehicular, Liquid Petroleum Gas (LPG) & Diesel Generator (DG) set emissions, residential, and commercial activities. The experimental data sampling and their analysis could aid understanding how dispersion based model technique along with receptor model based concept can be strategically used for quantitative analysis of Natural and Anthropogenic sources of PM10.  相似文献   
7.
针对某居住区附近氯气储罐连续泄漏,通过求解三维不可压缩Navier-Stokes方程、K-ε湍流模型和物质浓度方程,模拟毒气在建筑物扰动条件下的扩散过程以及浓度时空分布特征,以毒气负载为基础给出近地面毒气危害区域,探讨毒气扩散对周边居民的影响。  相似文献   
8.
In this study,a series of polyetherimide/SBA-15: 2-D hexagonal P6 mm,Santa Barbara USA(PEI/SBA-15) adsorbents modified by phosphoric ester based surfactants(including tri(2-ethylhexyl)phosphate(TEP),bis(2-ethylhexyl) phosphate(BEP) and trimethyl phosphonoacetate(TMPA))were prepared for CO_2 adsorption.Experimental results indicated that the addition of TEP and BEP had positive effects on CO_2 adsorption capacity over PEI/SBA-15.In particular,the CO_2 adsorption amount could be improved by around 20% for 45PEI–5TEP/SBA-15 compared to the additive-free adsorbent.This could be attributed to the decrease of CO_2 diffusion resistance in the PEI bulk network due to the interactions between TEP and loaded PEI molecules,which was further confirmed by adsorption kinetics results.In addition,it was also found that the cyclic performance of the TEP-modified adsorbent was better than the surfactant-free one.This could be due to two main reasons,based on the results of in situ DRIFT and TG-DSC tests.First and more importantly,adsorbed CO_2 species could be desorbed more rapidly over TEP-modified adsorbent during the thermal desorption process.Furthermore,the enhanced thermal stability after TEP addition ensured lower degradation of amine groups during adsorption/desorption cycles.  相似文献   
9.
Solute transport in fractured rocks is of major interest in many applications, from the petroleum industry to ground water management. This work focuses on the dispersion process in a transparent replica of a real single fracture. The fracture exhibits strong changes in heterogeneity, with the first half very heterogeneous and the second half fairly homogeneous. Three models have been used to interpret the tracer experiments: the classical advection-dispersion equation (ADE), the continuous time random walk (CTRW), and the stratified model. The main goals were to test these models and to study possible correlations between fitting parameters and heterogeneities. As expected, the solution derived from the ADE equation appears to be unable to model long-time tailing behavior. On the other hand, the results confirm the CTRW robustness and the coefficient beta seems well correlated to heterogeneities. Finally, the stratified model is also able to describe non-Fickian dispersion. The parameters defined by this model are correlated to the heterogeneities of the fracture.  相似文献   
10.
The evaluation of longitudinal dispersion in aquatic canopies is necessary to predict the behavior of dissolved species and suspended particles in marsh and wetland systems. Here we consider the influence of canopy morphology on longitudinal dispersion, focusing on transport before constituents have mixed over depth. Velocity and longitudinal dispersion were measured in a model canopy with vertically varying canopy density. The vertical variation in canopy morphology generates vertical variation in the mean velocity profile, which in turn creates mean-shear dispersion. We develop and verify a model that predicts the mean-shear dispersion in the near field from morphological characteristics of the canopy, such as stem diameter and frontal area. Close to the source, longitudinal dispersion is dominated by velocity heterogeneity at the scale of individual stems. However, within a distance of approximately 1 m, the shear dispersion associated with velocity heterogeneity over depth increases and eclipses this smaller-scale process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号