首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
环保管理   3篇
污染及防治   1篇
  2014年   1篇
  2009年   1篇
  2008年   2篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
Disposal of the municipal organic solid waste is a serious problem worldwide. Composting is one of the most preferred methods of solid waste management practice, principally due to the high percentage of organic material in the waste composition. Composting has advantages over land-filling and incineration in Mauritius because of lower operational costs, less environmental pollution, beneficial use of the end product, high humidity and organic content of household waste. Vermicomposting is a comparatively enhanced method in composting, and involves the stabilization of organic solid waste through earthworm consumption that converts the waste into earthworm castings. In both composting and vermicomposting processes, the presence of heavy metals and different toxics substances limits its land use without processing. The production and application of compost potentially contaminate the environment with heavy metals. There is a high-degree of consensus in the past and present literatures that composting increases metal concentrations but whether similar changes in metal concentration and availability occur during vermicomposting has not been fully resolved. This review deals with various total metal contents present in composting compared to that present in vermicomposting of organic solid wastes from past and present years.  相似文献   
2.
Epigeic earthworms (Oligochaeta) have been appeared as key organisms to convert organic waste resources into value-added products, i.e., vermicompost and worm biomass. The assessment of reproduction potential of composting earthworm may be beneficial for large-scale earthworm production. Although, the waste minimizing potential of Perionyx excavatus and Perionyx sansibaricus is well proved, but little information is available about their fecundity rate. In this study, the efforts have been made to explore the growth and reproduction biology of P. excavatus and P. sansibaricus, using cattle waste solid as culture substrate, under laboratory conditions. Earthworms were weighed weekly and number of cocoons produced per week assessed. Biomass productions, fecundity, maturation, natality all were significantly different between P. excavatus and P. sansibaricus. The highest mean individual biomass was 767.7 ± 18.4 mg and 612.6 ± 20.6 mg, respectively in P. sansibaricus and P. excavatus. However, the highest cocoon numbers occurred in P. excavatus (492.3 ± 13.6), significantly higher than P. sansibaricus (269.6 ± 17.1). Fecundity was slightly different in both species: 1.38 ± 0.77 cocoons adult worm−1 week−1 (P. excavatus) and 1.58 ± 0.74 cocoons adult worm−1 week−1 (P. sansibaricus). The hatchling success rate (%) was highest in P. excavatus. Overall natality (juveniles adult−1 week−1) was highest in P. sansibaricus (1.52) than P. excavatus (1.26), which suggests that P. sansibaricus may be a better candidate for rapid propagation of earthworms in cattle waste solid.  相似文献   
3.
Textile mill waste can be vermicomposted if it is mixed in the range of 20–30% with cow dung. This article reports the effect of inoculation, of nitrogen fixing Azotobacter chroococcum strain; Azospirillum brasilense strain and phosphate solubilizing Pseudomonas maltophila, on nitrogen and phosphorus content of vermicomposts prepared from cow dung (CD) and cow dung spiked textile mill sludge (CD + STMS). The CD vermicompost was more supportive to the growth and multiplication of all the three bacteria than CD + STMS vermicompost. In Azotobacter chroococcum treated vermicomposts maximum nitrogen content was recorded between 45 and 60 days [CD␣vermicompost (25.9 ± 0.45 g kg−1) and CD + STMS vermicompost (20.6 ± 0.62 g kg−1)] followed by Azospirillum brasilense inoculation [CD vermicompost (19.4 ± 0.60 g kg−1) and CD + STMS vermicompost (18.6 ± 0.17 g kg−1)]. Phosphorus content in Pseudomonas maltophila inoculated CD vermicompost was 20.8 ± 0.20 g kg−1 and CD + STMS vermicompost was 13.4 ± 0.45 g kg−1 after 75th day of inoculation.  相似文献   
4.
The influence of two vermicomposts from winery and distillery wastes on the distribution of diuron in agricultural soil was studied. Physical soil fractionations at 0, 9, 27, 49 and 77 days, allowed the quantification of pesticide residues in different particle-size fractions, coarse waste (WF), sand-sized (SF), silt-sized (SiF), clay-sized (CF) and dissolved organic matter-sized fraction (DOM). The SiF made a greater contribution to the formation of non-extractable residues in unamended soil, but when vermicomposts were added, new sorption sites in WF appeared, being higher for the more humified vermicompost V2. The dissolved organic carbon (DOC) increased with the addition of vermicompost, but the concentration of the desorbed 14C-radiochemical did not increase. Non-significant increment was observed with time for the non-extractable fraction with amendments. Diuron was transformed in all samples, although less than 0.5% was mineralized. The main effect caused by vermicomposts was a reduction in the availability of diuron in soil.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号