首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   234篇
  免费   23篇
  国内免费   4篇
安全科学   33篇
环保管理   135篇
综合类   57篇
基础理论   18篇
污染及防治   3篇
社会与环境   11篇
灾害及防治   4篇
  2024年   1篇
  2023年   2篇
  2022年   2篇
  2021年   5篇
  2020年   7篇
  2019年   6篇
  2018年   6篇
  2017年   10篇
  2016年   13篇
  2015年   8篇
  2014年   3篇
  2013年   21篇
  2012年   12篇
  2011年   12篇
  2010年   14篇
  2009年   5篇
  2008年   15篇
  2007年   7篇
  2006年   13篇
  2005年   10篇
  2004年   3篇
  2003年   8篇
  2002年   10篇
  2001年   3篇
  2000年   6篇
  1999年   5篇
  1998年   5篇
  1997年   4篇
  1996年   3篇
  1995年   2篇
  1994年   1篇
  1993年   2篇
  1992年   3篇
  1991年   6篇
  1990年   3篇
  1989年   3篇
  1988年   1篇
  1987年   4篇
  1986年   1篇
  1983年   4篇
  1981年   1篇
  1980年   3篇
  1979年   2篇
  1978年   2篇
  1977年   1篇
  1975年   1篇
  1972年   1篇
  1971年   1篇
排序方式: 共有261条查询结果,搜索用时 15 毫秒
1.
介绍对炼油厂净化水车间一级浮选2^#池的改造,并与未改造的1^#池进行工业应用对比试验。试验结果表明,改造后大大提高了气浮处理效果,平均除油率达85%,且除油效果稳定,出水合格率比对比池提高20.4%。  相似文献   
2.
基于TMS320F240 DSP的电网谐波抑制全数字化控制的研究   总被引:1,自引:0,他引:1  
为治理电力系统谐波污染 ,提高电力系统运行的安全稳定性 ,笔者对混合式并联有源电力滤波系统的结构和工作原理进行了分析和研究。该系统由无源滤波器和小容量有源滤波器串联构成 ,与被补偿的谐波负载并联连接。基于TMS32 0F2 4 0DSP开发套件 ,设计数字控制器主程序和中断服务子程序。实验结果表明 ,采用TMS32 0F2 4 0DSP编程方便并直观 ,运算精度高 ,控制器参数调整方便 ,易于实现各种控制策略。研究成果对DSP在有源电力滤波系统中的应用有重要参考价值。  相似文献   
3.
空中交通管制中人的可靠性模糊综合评价研究   总被引:10,自引:2,他引:10  
人是空中交通管制系统中最灵活、最具适应性和最有价值的因素 ,而其行为也是最易受到不利影响的。由于空中交通管制中产生的人为失误 ,往往会导致航空器空中危险接近 ,严重的后果甚至会酿成空难。笔者从人 -机 -环境系统工程的观点出发 ,提出了空中交通管制中人的可靠性评价的指标体系结构模型。从人自身因素、软件、硬件、环境等方面指出了影响空中交通管制中人的可靠性的心理、空中环境等 17个子因素。运用模糊数学的方法 ,建立空中交通管制中人的可靠性定量评价模型 ,并用实例进行了验证。研究表明 ,该方法应用于空中交通管制中人的可靠性评价是一种新的尝试 ,其评价结果可为各级领导机构提供航空安全管理的决策依据。  相似文献   
4.
Generally, one expects evapotranspiration (ET) maps derived from optical/thermal Landsat and MODIS satellite imagery to improve decision support tools and lead to superior decisions regarding water resources management. However, there is lack of supportive evidence to accept or reject this expectation. We “benchmark” three existing hydrologic decision support tools with the following benchmarks: annual ET for the ET Toolbox developed by the United States Bureau of Reclamation, predicted rainfall‐runoff hydrographs for the Gridded Surface/Subsurface Hydrologic Analysis model developed by the U.S. Army Corps of Engineers, and the average annual groundwater recharge for the Distributed Parameter Watershed Model used by Daniel B. Stephens & Associates. The conclusion of this benchmark study is that the use of NASA/USGS optical/thermal satellite imagery can considerably improve hydrologic decision support tools compared to their traditional implementations. The benefits of improved decision making, resulting from more accurate results of hydrologic support systems using optical/thermal satellite imagery, should substantially exceed the costs for acquiring such imagery and implementing the remote sensing algorithms. In fact, the value of reduced error in estimating average annual groundwater recharge in the San Gabriel Mountains, California alone, in terms of value of water, may be as large as $1 billion, more than sufficient to pay for one new Landsat satellite.  相似文献   
5.
Speiran, Gary K., 2010. Effects of Groundwater-Flow Paths on Nitrate Concentrations Across Two Riparian Forest Corridors. Journal of the American Water Resources Association (JAWRA) 46(2):246-260. DOI: 10.1111/j.1752-1688.2010.00427.x Abstract: Groundwater levels, apparent age, and chemistry from field sites and groundwater-flow modeling of hypothetical aquifers collectively indicate that groundwater-flow paths contribute to differences in nitrate concentrations across riparian corridors. At sites in Virginia (one coastal and one Piedmont), lowland forested wetlands separate upland fields from nearby surface waters (an estuary and a stream). At the coastal site, nitrate concentrations near the water table decreased from more than 10 mg/l beneath fields to 2 mg/l beneath a riparian forest buffer because recharge through the buffer forced water with concentrations greater than 5 mg/l to flow deeper beneath the buffer. Diurnal changes in groundwater levels up to 0.25 meters at the coastal site reflect flow from the water table into unsaturated soil where roots remove water and nitrate dissolved in it. Decreases in aquifer thickness caused by declines in the water table and decreases in horizontal hydraulic gradients from the uplands to the wetlands indicate that more than 95% of the groundwater discharged to the wetlands. Such discharge through organic soil can reduce nitrate concentrations by denitrification. Model simulations are consistent with field results, showing downward flow approaching toe slopes and surface waters to which groundwater discharges. These effects show the importance of buffer placement over use of fixed-width, streamside buffers to control nitrate concentrations.  相似文献   
6.
Abstract: We proposed a step‐by‐step approach to quantify the sensitivity of ground‐water discharge by evapotranspiration (ET) to three categories of independent input variables. To illustrate the approach, we adopt a basic ground‐water discharge estimation model, in which the volume of ground water lost to ET was computed as the product of the ground‐water discharge rate and the associated area. The ground‐water discharge rate was assumed to equal the ET rate minus local precipitation. The objective of this study is to outline a step‐by‐step procedure to quantify the contributions from individual independent variable uncertainties to the uncertainty of total ground‐water discharge estimates; the independent variables include ET rates of individual ET units, areas associated with the ET units, and precipitation in each subbasin. The specific goal is to guide future characterization efforts by better targeting data collection for those variables most responsible for uncertainty in ground‐water discharge estimates. The influential independent variables to be included in the sensitivity analysis are first selected based on the physical characteristics and model structure. Both regression coefficients and standardized regression coefficients for the selected independent variables are calculated using the results from sampling‐based Monte Carlo simulations. Results illustrate that, while as many as 630 independent variables potentially contribute to the calculation of the total annual ground‐water discharge for the case study area, a selection of seven independent variables could be used to develop an accurate regression model, accounting for more than 96% of the total variance in ground‐water discharge. Results indicate that the variability of ET rate for moderately dense desert shrubland contributes to about 75% of the variance in the total ground‐water discharge estimates. These results point to a need to better quantify ET rates for moderately dense shrubland to reduce overall uncertainty in estimates of ground‐water discharge. While the approach proposed here uses a basic ground‐water discharge model taken from an earlier study, the procedure of quantifying uncertainty and sensitivity can be generalized to handle other types of environmental models involving large numbers of independent variables.  相似文献   
7.
潜在蒸散发对水资源评价和气候变化均具有重要意义。采用Penman-Monteith公式和气象观测资料计算了中国西南地区90个气象站的潜在蒸散发,并采用多种统计方法分析了潜在蒸散发的时空变化特征。结果表明:(1)西南地区近52a的平均潜在蒸散发为3 209.8 mm,其中云南省潜在蒸散发最高(3 664.7 mm),其次为四川省(3 015.0 mm)、重庆市(2 972.4 mm)、贵州省(2 958.0 mm)。四季潜在蒸散发空间分布特征与年不同,从大到小排序为夏季,春季,秋季,冬季。(2)西南地区整体呈增加趋势(0.9 mm/10 a),其中31个站点呈减少趋势(p0.1),17个站点呈增加趋势(p0.1),其余站点变化趋势不显著。大部分站点春季(55.6%)和夏季(63.3%)呈减少趋势,秋季(62.2%)和冬季(58.9%)则呈增加趋势。(3)经MannKendall突变检验,该区整体潜在蒸散发的突变时间为1995年(p0.05);单个站点突变检验显示,76个站点发生突变,突变年份集中于1980s,未发生突变的站点主要分布于青藏高原东缘。整体上看,近52a来西南地区潜在蒸散发略呈增加趋势,并存在突变点,但部分站点存在相反的变化趋势,这和复杂的地形环境和气候特征有较大关系,体现出西南地区水文气象变化的独特性。  相似文献   
8.
Abstract:  It is critical that evapotranspiration (ET) be quantified accurately so that scientists can evaluate the effects of land management and global change on water availability, streamflow, nutrient and sediment loading, and ecosystem productivity in watersheds. The objective of this study was to derive a new semi‐empirical ET modeled using a dimension analysis method that could be used to estimate forest ET effectively at multiple temporal scales. The model developed describes ET as a function of water availability for evaporation and transpiration, potential ET demand, air humidity, and land surface characteristics. The model was tested with long‐term hydrometeorological data from five research sites with distinct forest hydrology in the United States and China. Averaged simulation error for daily ET was within 0.5 mm/day. The annual ET at each of the five study sites were within 7% of measured values. Results suggest that the model can accurately capture the temporal dynamics of ET in forest ecosystems at daily, monthly, and annual scales. The model is climate‐driven and is sensitive to topography and vegetation characteristics and thus has potential to be used to examine the compounding hydrologic responses to land cover and climate changes at multiple temporal scales.  相似文献   
9.
Abstract: Natural forests in southern China have been severely logged due to high human demand for timber, food, and fuels during the past century, but are recovering in the past decade. The objective of this study was to investigate how vegetation cover changes in composition and structure affected the water budgets of a 9.6‐km2 Dakeng watershed located in a humid subtropical mountainous region in southern China. We analyzed 27 years (i.e., 1967‐1993) of streamflow and climate data and associated vegetation cover change in the watershed. Land use/land cover census and Normalized Difference of Vegetation Index (NDVI) data derived from remote sensing were used to construct historic land cover change patterns. We found that over the period of record, annual streamflow (Q) and runoff/precipitation ratio did not change significantly, nor did the climatic variables, including air temperature, Hamon’s potential evapotranspiration (ET), pan evaporation, sunshine hours, and radiation. However, annual ET estimated as the differences between P and Q showed a statistically significant increasing trend. Overall, the NDVI of the watershed had a significant increasing trend in the peak spring growing season. This study concluded that watershed ecosystem ET increased as the vegetation cover shifted from low stock forests to shrub and grasslands that had higher ET rates. A conceptual model was developed for the study watershed to describe the vegetation cover‐streamflow relationships during a 50‐year time frame. This paper highlighted the importance of eco‐physiologically based studies in understanding transitory, nonstationary effects of deforestation or forestation on watershed water balances.  相似文献   
10.
ABSTRACT: Peachtree Creek is a gaged watershed that has experienced a substantial increase in urbanization. The relationships of runoff to rainfall were studied for total annual flows, low flows, and peak flows. For each type of flow the relationship in the later, more urbanized period was compared to that in the earlier, less urbanized period. An increase in total runoff in wet years was observed as urbanization increased, but a decrease occurred during dry years. For low flows a similar decrease of runoff in dry years was found. An increase in peak runoff was observed over most of the range of precipitation. Increasing peak flows and declining low flows can be adequately explained by urban hydrologic theoryshed. which focuses on the effects of urban impervious surfaces upon direct runoff and infiltration. However, a decline of total runoff in dry years can be explained only by taking into account evapotranspiration as well. The concept of advectively assisted urban evapotranspiration, previously discovered by climatologists, is needed to explain such a loss of total runoff. Urban hydrologic theory must take into account vegetation and evapotranspiration, as well as impervious surfaces and their direct runoff, to explain the magnitude of total annual flows and low flows. Urban stormwater management should address the restoration of low flows, as well as the control of floods.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号