首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37篇
  免费   0篇
  国内免费   7篇
废物处理   1篇
环保管理   17篇
综合类   14篇
基础理论   6篇
污染及防治   2篇
社会与环境   4篇
  2020年   2篇
  2019年   2篇
  2018年   4篇
  2017年   3篇
  2016年   3篇
  2014年   2篇
  2013年   3篇
  2011年   8篇
  2010年   1篇
  2008年   1篇
  2007年   2篇
  2006年   2篇
  2004年   3篇
  2002年   2篇
  1998年   1篇
  1997年   1篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
排序方式: 共有44条查询结果,搜索用时 328 毫秒
1.
从工业生态学角度研究矿区工业生态系统的工业代谢和工业生态链,建立矿区物质循环与能量流动[火用]分析和[火用]效率模型。根据生态效率的理念,矿区发展需要五项关键支撑技术,为合理选择煤炭的产业链延伸途径打下理论基础,促进矿区可持续发展。  相似文献   
2.
In this communication, a new design of solar-energy-based water distillation cum drying unit with parabolic reflector has been designed, fabricated, and tested. Bitter gourd and potato slices are chosen as a drying commodity. Thermal performance of the developed system has been evaluated based on the experimental results and using linear regression analysis. Heat transfer coefficients (convective, evaporative, and radiative) for solar distillation system have been observed to be 2.48–4.09, 13.25–52.38, and 8.75–9.66 W/m2°C, respectively. Overall thermal efficiency and exergy efficiency for the distillation system has been found to be 18.77% and 1.2%, respectively. The convective heat transfer coefficient for potato slices are observed higher for initial hours and decreases as the day progresses. The average convective heat transfer coefficients for bitter gourd and potato slices have been observed as 2.18 and 5.04 W/m2°C, respectively. Experimental error in terms of percent uncertainty for bitter gourd and potato slices are found to be 42.93% and 37.06%, respectively. The present design of solar distillation and drying in a single unit could be beneficial for the development of remote, arid, and rural areas.  相似文献   
3.
ABSTRACT

This article aims to study the influence of the addition of graphene oxide nanoparticles (GO) to diesel/higher alcohols blends on the combustion, emission, and exergy parameters of a CI engine under various engine loads. The higher alcohols mainly n-butanol, n-heptanol, and n-octanol are blended with diesel at a volume fraction of 50%. Then, the 25 and 50 mg/L concentrations of GO are dispersed into diesel/higher alcohols blends using an ultrasonicator. The GO structures are examined using TEM, TGA, XRD and FTIR. The findings show that there is a reduction in pmax. and HRR when adding higher alcohols with diesel fuel. Regarding engine emission, there is a significant improvement in emissions formation with adding higher alcohols. The addition of GO into diesel/higher alcohols blends improves the brake thermal efficiency by 15%. Moreover, the pmax. and HRR are both enhanced by 4%. The CO, UHC and smoke formation are reduced considerably by 40%, 50 and 20%, respectively, while NOx level is increased by 30% with adding GO. Finally, adding high percentages of n-butanol, n-heptanol, and n-octanol with diesel fuel with the presence of GO has the potential to achieve ultra-low CO, UHC, and smoke formation meanwhile keeping high thermal efficiency level.  相似文献   
4.
This paper addressed the performance of single flash combined with a binary system that was proposed in the Dieng geothermal power plant by applying thermodynamic assessment methods. A set of mathematical equations from the plant was developed and solved iteratively using engineering equation solver. The results showed that the available exergy of the produced fluid from production wells is 66,204 kW. The performance of an existing single-flash power plant indicated 24,300 kW of net power output. The proposed design of single flash combined with a binary system improves the power output by 17.16% to 27,786 kW. The second law efficiency increases from 36.7% to 41.97% while the first law efficiency increases from 11.62% to 13.61%.  相似文献   
5.
ABSTRACT

Large-scale greenhouse solar dryers have been used for drying various products and this type of dryer is usually equipped with LPG burner as auxiliary heater, which creates more operating cost. To overcome this problem, phase change material (PCM) thermal storage was proposed to substitute for the LPG burner. In this work, the performance of a large-scale greenhouse solar dryer integrated with a PCM as a latent heat storage for drying of chili was investigated. Experimental studies were conducted to compare the performance of this dryer with that of another large-scale greenhouse solar dryer without the PCM thermal storage and open sun drying. Chili with an initial moisture content of 74.7% (w.b.) was dried to a final moisture content of 10.0% (w.b.) in 2.5 days, 3.5 days, and 11 days using the solar dryer integrated with the PCM thermal storage, the solar dryer without the PCM thermal storage and the open sun drying, respectively. The performance of the solar dryer integrated with the PCM thermal storage was also evaluated using exergy analysis. The exergy efficiency of the drying room of the solar dryer integrated with the PCM thermal storage and the solar dryer without the PCM thermal storage for drying of chili was found to be 13.1% and 11.4%, respectively and the thermal storage helps to dry chili during adverse weather conditions. The results of exergy analysis implied that the exergy losses from the dryer with the PCM should be reduced.  相似文献   
6.
本文在回顾以往用经济方法和物理方法评估资源质的基础上,提出了用有效能评估自然资源质的新概念。  相似文献   
7.
依据热力学第二定律建立了污水处理单元Yong平衡分析的灰箱模型,提出了进行处理单元过程Yong评价的指标体系.在热力学意义上,污水生物处理是通过微生物内部的Yong耗散来消耗污水污染物能量的过程,推动该过程加速进行需要耗费外部的Yong.因此,节能的主要目的是节Yong,即应防止推动力过剩造成反应器单元的外部Yong损失.这一方法体系将为合理科学评判处理过程能耗机制奠定重要的理论基础.  相似文献   
8.
1IntroductionIncreasinglyseriouslakeeutrophicationhasbecomeaglobalenvironmentalproblemanddrawngreatatention.InChina,manylakes...  相似文献   
9.
从工业生态学角度研究矿区工业生态系统的工业代谢和工业生态链,建立矿区物质循环与能量流动(火用)分析和(火用)效率模型.根据生态效率的理念,矿区发展需要五项关键支撑技术,为合理选择煤炭的产业链延伸途径打下理论基础,促进矿区可持续发展.  相似文献   
10.
Life cycle analysis is one of the tools in the assessment of the sustainability of technological options. It takes into account all effects on the ecosystem and the population which may endanger the possibilities of current and future generations. However, the main bottleneck in current LCA methodologies is the balancing of different effects, being all quantified on different scales. In this work, a methodology is proposed, which allows one to quantify different effects of the production, consumption and disposal of goods, and services on a single scale. The basis of the methodology is the second law of thermodynamics. All production, consumption and disposal processes affecting the ecosystem and the population, are quantified in terms of loss of exergy. The exergy content of a material is the maximum amount of energy which can be transformed into work at given environmental conditions. Next to the elaboration of the methodology, the new approach is illustrated by examples of the production of synthetic organic polymers, inorganic building insulation materials and different waste gas treatment options.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号