首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
环保管理   8篇
综合类   1篇
  2018年   1篇
  2003年   1篇
  1995年   1篇
  1985年   1篇
  1982年   1篇
  1981年   1篇
  1977年   3篇
排序方式: 共有9条查询结果,搜索用时 31 毫秒
1
1.
长江源区水文气象要素变化及其归因研究一直备受全球关注,现阶段研究多侧重于水文气象要素时空变化特征分析,针对长江源区水文气象要素与大尺度环流因子相互关系的研究不足。论文利用Mann-Kendall法、去趋势波动分析法和小波分析法,探究长江源区1957—2012年水文气象要素趋势性、波动性和周期性变化规律,分析水文气象要素与大尺度环流因子的相关关系,通过研究水汽通量揭示大尺度环流因子对水文气象要素变化的驱动机制。结果表明:20世纪90年代,长江源区气候暖干化,进入21世纪后,长江源区气候暖湿化趋势明显;长江源区水文气象要素序列具有正长程相关性,长江源区气候未来会继续呈现暖湿化变化趋势。长江源区水文气象要素都存在着1~5、10~24和25~45 a三种时间尺度周期变化规律。南亚季风是影响长江源区降水量和流量较为重要的大气环流因子,南亚季风驱动下的西南方向气流是长江源区主导气流和水汽来源。  相似文献   
2.
ABSTRACT: A network of 225 recording raingages was operated over an area of 5200 km2 in the St. Louis region during 1971-1975, in conjunction with an extensive investigation of urban effects on precipitation. Study of urban-induced effects on the frequency of heavy rainstorms has revealed a pronounced increase in the occurrence of storms producing 25 mm (1 inch) or more of rain. The increase is greatest in an area that is frequently in the path of storms passing across two urban-industrial regions. Analyses of raincells (rain intensity centers) within heavy convective storms shows a pronounced increase in water yield from cells exposed to potential urban effects, compared with those exposed only to the surrounding rural environment. Naturally-occurring heavy cells tend to undergo the greatest enhancement from urban exposure. Other analyses indicate an above-average frequency of excessive rain rates for periods of five minutes to two hours downwind of the urban-industrial complex. It is concluded that urban-induced intensification of short-duration rainstorms is sufficient to merit inclusion in the design and operation of urban-area hydrologic systems that control the flow of surplus storm water.  相似文献   
3.
ABSTRACT: An extensive research program in hydrometeorology was recently initiated in the Chicago region. Major objectives are to 1) develop a real-time, prediction-monitoring system for storm rainfall using a combination of weather radar and telemetered raingage data, 2) determine precipitation measurement requirements for hydrologic design, operation, and modeling purposes, 3) define the time-space characteristics of heavy rainstorms in the Chicago urban area, and 4) establish methods for applying the Chicago findings in other cities. Basic components of the field measurement program are a network of over 300 recording raingages in 4000 mi2 in and around Chicago, plus two sophisticated weather radar systems for obtaining real-time information on storm parameters pertinent to optimizing operation of urban water resources systems. The raingage networks are to be used to compile information relevant to both design and operational aspects of urban hydrology. Radars are to be used primarily in developing the real-time operational techniques. Testing and evaluation of the real-time operational system will be done in cooperation with the Metropolitan Sanitary District of Chicago, operator of one of the most complex urban water control systems among major metropolitan areas.  相似文献   
4.
ABSTRACT: Accurate forecasting of heavy rainstorms that affect the Chicago Metropolitan area and lead to the undesirable release of storm runoff into Lake Michigan is a major objective. These releases (overflows) were found to be produced by storm events yielding 2 inches or more in a few hours, although only 24 percent of such ≥ 2-inch storms in the area during 1948-1981 produced overflows. Failure to forecast properly or to be able to react to these 2-inch overflow producing events has occurred most often in the spring and fall, although relatively often in June and July in recent years. These overflows have exhibited an inexplicable trebling during 1972-1981 without an increase in ≥ 2-inch storm events. This type of troublesome storm can be reliably predicted, using a recently developed radar man forecast system for the Chicago area.  相似文献   
5.
The general intervention model is applied to hydrologic and meteorologjc time series from the Canadian Arctic. The authors show how the model is able to account for environmental interventions, missing observations in the data, changes in data collection procedures, the effects of external inputs, as well as seasonality and autocorrelation. Methods for identifying transfer functions by making use of a physical understanding of the processes involved are demonstrated and sample applications of the general intervention model to Arctic data are shown.  相似文献   
6.
ABSTRACT: Detailed studies of rainfall frequency and pattern relations were made over the Chicago urban region and the surrounding six Illinois counties (Cook, DuPage, Kane, Will, Lake, and McHenry). These studies utilized raingage records from an urban network of National Weather Service raingages in the region, primarily for the period 1949 to 1974. Frequency distributions of point rainfall were obtained for periods from 5 minutes to 72 hours and recurrence intervals of 6 months to 50 years. These results indicated a spatial pattern of short-duration heavy rainfall frequencies related to urban-lake effects, particularly in the huge industrial region over the southern portion of Chicago. The time distribution within heavy rainstorms over the urban region was determined, and it was found that the point rainfall relations over the urban region were similar to a 12-year sample of a dense raingage network over a rural area in central Illinois. The characteristics of heavy rainfall over northeast Illinois were also studied through the use of heavy, 1-day storms. A total of 87 storms, capable of producing local flooding, were analyzed to determine 1) the frequency distribution of storm centers, 2) seasonal and diurnal distribution of storms, and 3) orientation and movement of storms.  相似文献   
7.
ABSTRACT: Wind driven raindrop tracking is used to investigate the microscale redistribution of wind driven rainfalls in street canopies by combining a Eulerian wind flow model and a Lagrangian raindrop tracking model. The former conducts large eddy simulations of the turbulent flows in street canopies, and the latter performs raindrop trajectory calculations by releasing a large number of raindrops into the computational domain. The wind speed model is verified with available wind tunnel measurement. Twenty sets of simulations are carried out for various building configurations and driving rain angles. The simulated results show that the trajectories of smaller raindrops are more slanting and more influenced by the multibuilding perturbed flow field. Impingement of raindrops on the building envelope increases from bottom to top. The height of the front building is a significant factor affecting wind driven rain redistribution. Distinct nonuniform spatial rainfall distributions are found for scenarios with high building configurations and low driving rain angles. The simulated results are further integrated to assess the effect of real raindrop size distributions by weighing the volumetric fraction of a range of drop sizes. There is about 10 percent variation in spatial extent of street canopies. An overall 5 to 17.4 percent increase of the rainfall amount in the upwind zone is observed.  相似文献   
8.
ABSTRACT: Major hydrometeorological factors pertinent to defining and understanding the hydrologic characteristics of urban and other small-basin storms were investigated using data from a continuous 44-year operation of a recording raingage network in Chicago. Factors included: the frequency distribution of basin mean rainfall and its relation to storm maximum precipitation; the spatial distribution characteristics of each storm, including storm rainfall reduction factors which are widely used in hydrologic design problems; and weather-related causes related to the frequency and intensity of severe rainstorms in the Chicago area in recent years. Results have indicated that urban mean rainfall frequencies were overestimated in earlier studies in which they were derived from point/areal mean rainfall ratios obtained from much shorter records on rural networks. Reduction factors were found to vary between urban and rural storm systems due to urban-related effects. Two factors were found to be potential contributors to the characteristics of severe rainstorm occurrences at Chicago. These include urban-induced rain enhancement and an upward climatic trend in the occurrence of heavy rainfall events during the sampling period. Study results should be generally applicable to other large urban areas in the Midwest and other regions of similar precipitation climate.  相似文献   
9.
A classification scheme for convective precipitation, having applications in both analysis and modeling of meteorological and hydrological events, is presented. The method is based upon observations of rainfall at the ground, radar scans of storm events, and visible and infrared satellite imagery of larger storm systems. Empirical and theoretical frequency distributions are derived for total storm rainfall, rainfall duration and time between storms for each of the convective categories. This stratification is directly applicable to the experimental design and evaluation of weather modification projects and may be useful for the development and interpretation of meteorological and hydrological models. When atmospheric conditions limit storm development to cells, rainfall was seldom observed. Small clusters also produce small amounts of rainfall but have a longer lifetime than cells and are likely candidates for cloud seeding attempts to encourage their growth to large clusters. Large and nested clusters usually produce large amounts of natural precipitation. A few large storms account for most of a season's rainfall.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号