首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
安全科学   1篇
环保管理   9篇
综合类   2篇
污染及防治   2篇
社会与环境   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2008年   1篇
  2007年   1篇
  2005年   3篇
  2003年   1篇
  2002年   1篇
  1999年   1篇
  1996年   2篇
  1991年   1篇
排序方式: 共有15条查询结果,搜索用时 15 毫秒
1.
This paper examines the relationships between measurable watershed hydrologic features, base flow recession rates, and the Q7,10 low flow statistic (the annual minimum seven‐day average streamflow occurring once every 10 years on average). Base flow recession constants were determined by analyzing hydrograph recession data from 24 small (>130 km2), unregulated watersheds across five major physiographic provinces of Pennsylvania, providing a highly variable dataset. Geomorphic, hydrogeologic, and land use parameters were determined for each watershed. The base flow recession constant was found to be most strongly correlated to drainage density, geologic index, and ruggedness number (watershed slope); however, these three parameters are intercorrelated. Multiple regression models were developed for predicting the recession rate, and it was found that only two parameters, drainage density and hydrologic soil group, were required to obtain good estimates of the recession constant. Equations were also developed to relate the recession rates to Q7,10 per unit area, and to the Q7,10/Q50 ratio. Using these equations, estimates of base flow recession rates, Q7,10, and streamflow reduction under drought conditions can be made for small, ungaged basins across a wide range of physiography.  相似文献   
2.
Abstract: Storm‐flow transients (i.e., hydrograph rise and fall dynamics) may represent an important aspect of understanding streamflow dynamics. However, little is known about how temporal resolution of transient data and climate variability may color these potential indicators of hydrologic pattern or condition. Warm‐season stream stage and rainfall were monitored continuously (5 min) during the 2002 water year in eight tributaries of the Little Miami River (Ohio), which drain 17‐58 km2 catchments. Rise rates generated using 5‐min data were different than those generated with mean daily data [calculated with the Indicators of Hydrologic Alteration (IHA) software], though fall rates were similar for fine and coarse temporal data. This result suggests that data with low temporal resolution may not be adequate to fully represent the dynamics of storm rise rates. Conversely, fall rates based on daily stage data (via IHA) were similar to those based on the 5‐min data, and so daily mean data may be appropriate for characterizing fall rates. We next analyzed the possible correlations between rainfall variability and storm‐flow stage dynamics. We derived rise and recession rates from storm stage hydrographs by assuming exponential rise and decay of a runoff peak. We found that raw rise rates (Rraw) were correlated with both the maximum rainfall rate and the time to the centroid of a rain event. We subsequently removed the trend based on these rainfall characteristics, which yielded new representations of rise rates abbreviated as Rrate and Rtcent, respectively, and that had lower variability than the uncorrected (raw) data. Fall rates were found to be independent of rainfall characteristics. Due to the predominant influence of stream hydrology upon aquatic biota and nutrient fluxes, our work suggests that these stage data analysis protocols can refine or otherwise reduce variability in these indices by accounting for relevant factors such as rainfall forcing. These protocols for derivation of transient indices should be tested for their potential to improve correlations between stream hydrology and temporally aligned biotic data and dissolved nutrient fluxes in streams.  相似文献   
3.
ABSTRACT: Waddell Creek is a perennial stream near Santa Cruz, California, which discharges into the Pacific Ocean about 38 km from the epicenter of the Loma Prieta earthquake (October 17, 1989, M 7.1). The earthquake caused no significant changes or damage to structures or surface features in the area, but was followed by an order of magnitude transient increase in discharge of Waddell Creek and nearby springs. The transients approximate a step rise followed by an exponential recession with time constants of from 37 to 59 days. The flow recession pattern of Waddell Creek was obscured by heavy rains after about 50 days; however, the springs maintained an exponential recession with minimal rain interference for periods of several time constants, then abruptly ceased flowing. A comparison of the pre-quake and post-quake chemical signature of one of the springs shows only minor changes in water chemistry indicating a common source for pre- and post-quake waters. Increased permeability of the subsurface ground material appears to be the most probable cause of the hydrologic changes. Post-seismic reduction of permeability has not been observed or inferred.  相似文献   
4.
ABSTRACT: It is important to extract and assess low flow recession characteristics for water resources planning in the upper reaches of streams. However, it is very difficult to express synthetically the low flow recession characteristics for a stream flow. In this paper, first a new method of constructing the master recession curve based on the exponential expression is proposed and applied with the restriction that there are no regulation or diversion structures in the upper reaches above the measurement station. Daily precipitation and stream flow were used for the analysis. Second, analysis for a recession constant was conducted and the relationship between the recession constant and low flow and/or geology was qualitatively examined. In conclusion, the application of the proposed method indicated that it is objective and useful for constructing the master recession curve. It became apparent that the recession constant of a master recession curve may be defined as the total index of low flow characteristics. In addition, it was found that baseflow value increases in the order of Paleozoic, Mesozoic, Tertiary, and Quaternary.  相似文献   
5.
复杂岩溶矿床延深水平涌水量的预测   总被引:1,自引:0,他引:1  
随着岩溶矿床的延深开采,矿坑涌水量的计算成为防治水害首先要解决的难题。文章创造性地采用国外广泛采用的岩溶水衰减动态分析法,选择了我国南方复杂岩溶含水层中有代表性的重庆市红岩煤矿,将丛林采区茅口组岩溶水动力单元和该单元南大巷(标高+370 m)的茅口灰岩岩溶含水层的主要排水点-1号突水点作为研究对象,建立了该单元岩溶含水层的计算模型-衰减动态(流量和水位)方程,求出了岩溶水动力单元水均衡、地下水储量计算和矿坑涌水量预测的水文地质参数:a、T、K、S、μ、Ie,建立了该单元岩溶裂隙-管道水的水均衡方程, 根据连续观察一个水文年以上的丰富地下水动态资料,预测了红岩煤矿370 m标高以下的延伸开采水平(295- 370 m)矿坑涌水量。  相似文献   
6.
Abstract: The subjective nature of graphical base‐flow separation combined with the many applications of base‐flow time series derived from continuous streamflow data, motivates the development and application of automated algorithms for heuristic base‐flow separation. Base‐flow time series derived from gauged streamflow support diverse applications in engineering hydrology, catchment analysis, hydrogeologic investigations, regional low‐flow analysis, and recharge estimation. Whether based on graphical procedures for recession analysis or analytical expressions derived from fundamental equations of ground‐water flow, the variety of base‐flow separation algorithms belies the array of base‐flow definitions and interpretations that variously refer to dominant process, source, flow path, and characteristic response time. Algorithms that are invariant in their consistent – though heuristic – characterization of base‐flow response are particularly useful for interbasin comparisons of low‐flow characteristics and hydrologic regionalization. More adaptable algorithms provide application‐specific flexibility in allocating flow components like interflow to either quickflow or slowflow. Four widely used algorithms that produce consistent base‐flow time series using only gauged streamflow records are compared and contrasted with a complementary heuristic algorithm that incorporates hydrologic judgment explicitly, through manual parameterization. The utility of these inherently subjective algorithms is illustrated through a simple example of flow phase separation in a two‐component end‐member mixing model of dissolved chlorides in the Cuyahoga River.  相似文献   
7.
We have enhanced the ability of a widely used watershed model, Hydrologic Simulation Program — FORTRAN (HSPF), to predict low flows by reconfiguring the algorithm that simulates groundwater discharge. During dry weather periods, flow in most streams consists primarily of base flow, that is, groundwater discharged from underlying aquifers. In this study, HSPF's groundwater storage‐discharge relationship is changed from a linear to a more general nonlinear relationship which takes the form of a power law. The nonlinear algorithm is capable of simulating streamflow recession curves that have been found in some studies to better match observed dry weather hydrographs. The altered version of HSPF is implemented in the Chesapeake Bay Program's Phase 5 Model, an HSPF‐based model that simulates nutrient and sediment loads to the Chesapeake Bay, and is tested in the upper Potomac River basin, a 29,950 km2 drainage area that is part of the Bay watershed. The nonlinear relationship improved median Nash‐Sutcliffe efficiencies for log daily flows at the model's 45 calibration points. Mean absolute percent error on low‐flow days dropped in five major Potomac River tributaries by up to 12 percentage points, and in the Potomac River itself by four percentage points, where low‐flow days were defined as days when observed flows were in the lowest 5th percentile range. Percent bias on low‐flow days improved by eight percentage points in the Potomac River, from ?11 to ?3%.  相似文献   
8.
ABSTRACT: To quantify and model the natural ground water recharge process, six sites located in the midwest and eastern United States where previous water balance observations had been made were compared to computerized techniques to estimate: (1) base flow and (2) ground water recharge. Results from an existing automated digital filter technique for separating baseflow from daily streamflow records were compared to baseflow estimates made in the six water balance studies. Previous validation of automated baseflow separation techniques consisted only of comparisons with manual techniques. In this study, the automated digital filter technique was found to compare well with measured field estimates yielding a monthly coefficient of determination of 0.86. The recharge algorithm developed in this study is an automated derivation of the Rorabaugh hydrograph recession curve displacement method that utilizes daily streamflow. Comparison of annual recharge from field water balance measurements to those computed with the automated recession curve displacement method had coefficients of determination of 0.76 and predictive efficiencies of 71 percent. Monthly estimates showed more variation and are not advocated for use with this method. These techniques appear to be fast, reproducible methods for estimating baseflow and annual recharge and should be useful in regional modeling efforts and as a quick check on mass balance techniques for shallow water table aquifers.  相似文献   
9.
ABSTRACT: Patterns of dry season surface flow in forested headwater channels of southwest Washington were observed during August to September 2001 and July to October 2002. In 2001, 17 channels were sampled once, and the uppermost points of continuous flow (CF) and surface water (SW) were located. In 2002, sampling was replicated three to five times at each of 21 channels. Annual and seasonal data suggested that the location of SW varied less than CF. In most channels, SW remained at or near the channel head year around. The pattern of surface flow between CF and the channel head was used to test alternative hypotheses describing dry season recession patterns: (A) surface flow consistently retreats in a downstream direction, and (B) flow comes from fixed sources along the channel, thus surface flow retreats up‐channel towards these sources. The dominant surface flow spatial pattern in streams less than 30 percent slope was increased intermittency without a clear pattern of retreat, and thus inconsistent with either hypothesis. High gradient channels (< 30 percent slope) exhibited a combination of increased intermittency, and extensive upward retreats of surface water consistent with Hypothesis B. Differences between 2001 and 2002 suggest late summer flows in small headwater basins were controlled by spring precipitation, rather than the typically greater winter precipitation.  相似文献   
10.
ABSTRACT: An analysis of hydrograph recessions and rainfall data was performed to estimate the recession constants for two watersheds in the Luquillo mountains of Puerto Rico. To account for seasonal rainfall patterns, the data were grouped into dry and wet seasons. Sets of three Master Recession Curves (MRC) per season for each watershed were developed: one using the Matching Strip Method (MS) and two using variations of the Correlation Method (CM). These variations were the envelope line (CME) and the least squares regression (CMR). Other regression based analytical expressions that consider the streamflow recession as an autore‐gressive or an integrated moving average process were also applied. The regression based methods performed consistently better than the graphical ones and they proved to be faster, easier, and less subjective. The recession constants from these methods were then used to estimate the time it would take the streamflow to reach the critical Q99 flow duration. Based on this study, once the streamflow reaches Q90, water managers have 6 to 12 days warning before streamflow reaches critical levels.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号