首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
环保管理   1篇
  1984年   1篇
排序方式: 共有1条查询结果,搜索用时 0 毫秒
1
1.
The breakpoint rainfall hydrology and pesticide options of the field scale model CREAMS (Chemicals, Runoff, and Erosion from Agricultural Management Systems) were used to predict average concentrations of hexazinone [3 cyclohexyl-6-(dimethyl-amino)-1-methyl-1,3,5-triazine-2,4(1H,3H)-dione] in stormflow from four forested watersheds in the upper Piedmont region of Georgia. Predicted concentrations were compared with measured concentrations recorded over a 13-month period. CREAMS accurately predicted hexazinone concetrations in the initial stormflow events which also contained the highest concentrations. The model underestimated the hexazinone concentrations in stormflow two months and greater following pesticide application. In a companion study, the daily rainfall option of the CREAMS model was used to evaluate the reltive risk associated with the maximum expected concentration of hexazinone, bromacil (5-bromo-3 sec-butyl-6 methyuracil), picloram (4-amino-3,5,6 trichloropicolinic acid), dicamba (3,6-dichloro-0-anisic acid), and triclopyr {[(3,5,6-trichloro-2-pyridinyl)oxy] acetic acid} in stormflow from small forested watersheds. The model predicted the following order of potential residue appearance in stormflow: bromacil>triclopyr>hexazinone>picloram>dicamba. Subsurface movement of residues via interflow and deep leaching losses are not simulated by the version of CREAMS used in these studies.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号