首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   1篇
  国内免费   6篇
综合类   7篇
污染及防治   2篇
  2014年   1篇
  2012年   3篇
  2011年   1篇
  2009年   1篇
  2008年   1篇
  2005年   2篇
排序方式: 共有9条查询结果,搜索用时 31 毫秒
1
1.
Padhy PK  Varshney CK 《Chemosphere》2005,59(11):1643-1653
Foliar emission of volatile organic compounds (VOC) from common Indian plant species was measured. Dynamic flow enclosure technique was used and the gas samples were collected onto Tenax-GC/Carboseive cartridges. The Tenax-GC/Carboseive cartridges were attached to the thermal disorber sample injection system and the gas sample was analysed using gas chromatography (GC) with flame ionisation detection (FID). Fifty-one local plant species were screened, out of which 36 species were found to emit VOC (4 high emitter; 28 moderate emitter; and 4 low-emitter), while in the remaining 15 species no VOC emission was detected or the levels of emission were below detection limit (BDL). VOC emission was found to vary from one species to another. There was a marked seasonal and diurnal variation in VOC emission. The minimum and maximum VOC emission values were < 0.1 and 87 microgg(-1) dry leaf h(-1) in Ficus infectoria and Lantana camara respectively. Out of the 51 plant species studied, 13 species are reported here for the first time. Among the nine tree species (which were selected for detailed study), the highest average hourly emission (9.69+/-8.39 microgg(-1) dry leaf) was observed in Eucalyptus species and the minimum in Syzygium jambolanum (1.89+/-2.48 microgg(-1) dry leaf). An attempt has been made to compare VOC emission from different plant species between present study and the literature (tropical and other regions).  相似文献   
2.
Secondary organic aerosol (SOA) formation from hydroxyl radical (OH.) initiated photooxidation of α-pinene was investigated in a home-made smog chamber. The size distribution of SOA particles was measured using aerodynamic particle sizer spectrometer. The effects of illumination intensity and light application time on SOA formation for α-pinene were evaluated. Experimental results show that the concentration of SOA particles increased significantly with an increasing of illumination intensity, and the light...  相似文献   
3.
1株α-蒎烯降解菌的分离鉴定及降解特性研究   总被引:1,自引:0,他引:1       下载免费PDF全文
从处理废气的生物滤塔内筛选到1株能高效降解α-蒎烯的菌株PT.通过菌落形态、生理生化特征、16SrRNA基因序列相似性分析及Biolog鉴定等方法,确定该菌株属于荧光假单胞菌(Pseudomonas fluorescens).菌株PT最佳生长条件为: NaCl浓度0.00%、pH7.13、温度25.5℃,降解速率达到最大值5.22mg/(L×h).降解过程符合Haldane’s抑制生长动力学模型,最大比降解速率为0.0364h-1.菌株PT能不同程度地降解一些分子结构较为简单或与α-蒎烯结构相似的工业有机污染物.代谢产物分析表明,菌株PT在降解α-蒎烯的过程中产生柠檬油精、紫苏酸等结构较为简单的物质,它们最终被完全矿化为CO2或合成细胞自身组成物质.碳平衡分析表明,底物有机碳含量完全矿化和转化为细胞生物量的比例分别为64.83%和30.37%.  相似文献   
4.
Biodegradation has become a popular alternative remediation technology for its economic and ecological advantages. An aerobic bacterium (strain ZW) capable of degrading αup-pinene was isolated from a biofilter by a selective enrichment. Based on the 16S rRNA gene analysis and physiochemical properties, this strain was identified as Pseudomonas veronii. Under the optimized condition achieved by the response surface methodology (RSM), as well as pH 6.82, temperature 26.3\textcelsius and NaCl concentration 1.36%, almost 100% αup-pinene could be removed within 45 hr. Enzymatic biodegradation by the crude intracellular enzyme could be described well by the Michaelis-Menten model in which the maximum degradation rate Vmax and the half-saturation constant Km were calculated to be 0.431 mmol/(L. min) and 0.169 mmol/L, respectively. Activity assay of catechol suggested that the strain ZW possessed a catechol-1,2-dioxygenase and could decompose benzene-ring through ortho ring cleavage. Based on the identified intermediates by GC/MS, a new metabolic pathway was proposed, in which the final metabolites were some simpler organic and inorganic compounds. The present work demonstrated that the strain ZW would have a great application prospect for the remediation of αup-pinene-contaminated environment.  相似文献   
5.
Smog chamber experiments were conducted to investigate the hygroscopicity of particles generated from photooxidation of α-pinene/NOx with different sulfate seed aerosols or oxidation conditions. Hygroscopicity of particles was measured by a tandem differential mobility analyzer (TDMA) in terms of hygroscopic growth factor (Gf), with a relative humidity of 85%. With sulfate seed aerosols present, Gf of the aerosols decreased very fast before notable secondary organic aerosols (SOA) formation was observed, indicating a heterogeneous process between inorganic seeds and organic products might take place as soon as oxidation begins, rather than only happening after gas-aerosol partition of organic products starts. The final SOA-coated sulfate particles had similar or lower Gf than seed-free SOA. The hygroscopicity of the final particles was not dependent on the thickness but on the hygroscopicity properties of the SOA, which were influenced by the initial sulfate seed particles. In the two designed aging processes, Gf of the particles increased more significantly with introduction of OH radical than with ozone. However, the hygroscopicity of SOA was very low even after a long time of aging, implying that either SOA aging in the chamber was very slow or the Gf of SOA did not change significantly in aging. Using an aerosol composition speciation monitor (ACSM) and matrix factorization (PMF) method, two factors for the components of SOA were identified, but the correlation between SOA hygroscopicity and the proportion of the more highly oxidized factor could be either positive or negative depending on the speciation of seed aerosols present.  相似文献   
6.
实验选择2010年7月于雅安市白马泉风景区常绿阔叶林内采集PM2.5样本,并对样本进行甲醇提取、三甲硅醚衍生化及GC/MS分析,探讨研究区域内气溶胶中异戊二烯氧化产物、α-/β-蒎烯氧化产物、小分子羧酸(苹果酸、2-羟基戊二酸)的浓度与昼夜变化趋势,并结合大气污染气体(SO2、NOx、O3)和环境气候条件(风速、温度、湿度等)对其浓度的影响进行讨论.结果表明,24 h PM2.5样本中,2-甲基丁四醇、异丁烯三醇、2-甲基甘油酸的浓度分别为63.3、45.0、4.4 ng.m-3;降蒎酸、3-羟基戊二酸、3-羟基-1,2,3-丁三酸的浓度分别为4.1、5.0、5.3 ng.m-3.除降蒎酸外,此次研究的其他二次有机气溶胶组分均呈现昼高夜低.白马泉风景区聚集了较高浓度的天然源二次有机物与当地亚热带繁茂的植被、湿热气候、沟谷型地貌及大气污染状况等诸多环境因素有关.  相似文献   
7.
Biofiltration is considered an effective method to control volatile organic compounds (VOCs) pollution. This study was conducted to evaluate the potential use of a bacterial biofilter packed with wood chips and peat for the removal of hydrophobic α-pinene. When inoculated with two pure degraders and adapted activated sludge, a removal efficiency (RE) of more than 95% was achieved after a start-up period of 11 days. The maximum elimination capacity (EC) of 50 g/(m3. hr) with RE of 94% was obtained at empty bed retention time (EBRT) of 102 sec. When higher α-pinene concentrations and shorter EBRTs were applied, the REs and ECs decreased significantly due to mass-transfer and biological reaction limitations. As deduced from the experimental results, approximately 74% of α-pinene were completely mineralized by the consortiums and the biomass yield was 0.60 g biomass/g α-pinene. Sequence analysis of the selected bands excised from denaturing gradient gel electrophoresis revealed that the inoculated pure cultures could be present during the whole operation, and others were closely related to bacteria being able to degrade hydrocarbons. The kinetic results demonstrated that the whole biofiltration for α-pinene was diffusion-limit controlled owing to its hydrophobic characteristics. These findings indicated that this bacterial biofiltration is a promising technology for the remediation of hydrophobic industrial waste gases containing α-pinene.  相似文献   
8.
The biogenic species α-pinene, β-pinene, and d-limonene are among the most abundant monoterpenes emitted globally. They are also important precursors to secondary organic aerosol (SOA) formation in the atmosphere. This study involves the development of proposed oxidation mechanisms for these three species. Semi- and non-volatile oxidation products with the potential to lead to SOA formation are predicted explicitly. Simulation code that describes the gas-phase oxidation mechanisms including reactions that lead to ozone (O3) formation is coupled to an equilibrium absorptive partitioning code. The coupled model is used to simulate both gas-phase chemistry and SOA formation associated with oxidation of these three species in chamber experiments involving single as well as multiple oxidants. For the partitioning model, required molecular properties of the oxidation products are taken from the literature or estimated based on structural characteristics. The predicted O3 and SOA concentrations are typically within ±50% of measured values for most of the experiments except for the experiments with low initial hydrocarbon concentrations and the nitrate radical experiments with α-pinene. The developed model will be used to update a gas-phase chemical mechanism and a SOA formation module used in a three-dimensional air quality model.  相似文献   
9.
An indoor chamber facility is described for investigation of atmospheric aerosol chemistry. Two sets of α-pinene ozonolysis experiments were conducted in the presence of dry ammonium sulfate seed particle: ozone limited experiments and α-pinene limited experiments. The concentration of gas phase and particle phase species was monitored continuously by on-line instruments and recorded automatically by data sampling system. The evolution of size distribution was measured by a scanning mobility particle sizer ...  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号