首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   1篇
  国内免费   3篇
安全科学   1篇
废物处理   2篇
环保管理   1篇
综合类   3篇
基础理论   3篇
污染及防治   3篇
评价与监测   1篇
社会与环境   1篇
  2023年   1篇
  2021年   4篇
  2018年   1篇
  2017年   1篇
  2014年   1篇
  2011年   2篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2004年   1篇
排序方式: 共有15条查询结果,搜索用时 15 毫秒
1.
Information on the particle size distribution of bioaerosols emitted from open air composting operations is valuable in evaluating potential health impacts and is a requirement for improved dispersion simulation modelling. The membrane filter method was used to study the particle size distribution of Aspergillus fumigatus spores in air 50 m downwind of a green waste compost screening operation at a commercial facility. The highest concentrations (approximately 8 × 104 CFU m−3) of culturable spores were found on filters with pore diameters in the range 1–2 μm which suggests that the majority of spores are emitted as single cells. The findings were compared to published data collected using an Andersen sampler. Results were significantly correlated (p < 0.01) indicating that the two methods are directly comparable across all particles sizes for Aspergillus spores.  相似文献   
2.
Reduction of viable airborne Staphylococcus epidermidis and Aspergillus niger spore concentrations using two types of photocatalytic fluorescent lamps under controlled environmental conditions (25 vs. 35 °C and 55 vs. 75% relative humidity) were investigated. Visible white-light and UVA black light were in-house spray-coated with TiO2 and then compared with a commercially coated visible white-light for microbial concentration reduction. The white-light photocatalytic lamps reduced the concentration of culturable S. epidermidis up to 92% independent of temperature or humidity change, while the black light photocatalytic lamps completely inactivated the culturable bacteria at 25 °C, 55% relative humidity. Humidity seemed to alleviate UVA damage since better bacteria survival was found. For A. niger spores, rising humidity or temperature could lower their concentration or drop their culturabilities so that a difference between the natural decay and photocatalytic disinfection could not be distinguished. Reductions of total bacteria and total fungi concentrations using these lamps were also examined under uncontrolled environmental conditions in an office and a waste-storage room. It was found that photocatalytic lamps could reduce total culturable bacteria concentration from 9 to 97% and total culturable fungi concentration from 3 to 95% within irradiation time of 30-480 min, respectively. Insignificant difference in concentration reduction among these photocatalytic lamps was pronounced.  相似文献   
3.
4.
介绍了沉降法、撞击法和静电场吸附法等3种常见生物气溶胶采样技术的基本原理及各自的优缺点,指出其发展趋势为建立复合式、大流量联合采样技术及小活性粒子的采样技术,实现生物气溶胶的快速自动化采样.  相似文献   
5.
Pathogenic microbes with antibiotic resistance can thrive on municipal solid waste as nutrients and be aerosolized and transported to vicinities during waste disposal processes. However, the characterization of pathogenic bioaerosols and assessment of their exposure risks are lacking. Herein, particle size, concentration, activity, antibiotic resistance, and pathogenicity of airborne microorganisms were assessed in different sectors of a typical landfill. Results showed that active sector in downwind direction has the highest bioaerosol level (1234 CFU/m3), while residential area has the highest activity (14.82 mg/L). Botanical deodorizer from mist cannon can effectively remove bioaerosol. Most bioaerosols can be inhaled into respiratory system till bronchi with sizes ranging from 2.1−3.3 and 3.3−4.7 µm. Pathogenic bacteria (Bacilli, Bacillus, and Burkholderia-Paraburkholderia) and allergenic fungi (Aspergillus, Cladosporium, and Curvularia) prevailed in landfill. Although high abundance of microbial volatile organic compounds (mVOCs) producing bioaerosols were detected, these mVOCs contributed little to odor issues in landfill. Notably, surrounding areas have higher levels of antibiotic-resistance genes (ARGs) than inner landfill with tetC, acrB, acrF, mdtF, and bacA as dominant ones. Most ARGs were significantly correlated with bacterial community, while environmental parameters mainly influenced fungal prevalence. These findings can assist in reducing and preventing respiratory allergy or infection risks in occupational environments relating to waste management.  相似文献   
6.
Swine manure was subjected to laboratory scale composting in order to quantify bioaerosols, i.e., airborne culturable bacteria and endotoxin, in the exhaust gas, which provided details on the effect of temperature on bacterial emissions. The concentration of airborne bacteria reached 31,250 colony-forming units (CFU)/m3 during the thermophilic stage of composting, and positively correlated with the temperature profile of the compost pile. Initially, the endotoxin concentration was 1820 endotoxin units (EU)/m3, but it decreased exponentially as the composting process proceeded. The temperature can be an excellent indicator of bacterial emissions during the composting process, indicating that the composting process requires a consistently high temperature to ensure sanitization of both compost and bacterial emissions. The cumulative emission data showed that emission factors was 11.2?13.5 CFU/g dry swine manure and that of endotoxin was 0.5?0.9 EU/g dry swine manure. The bacterial diversity in the bioaerosol was analyzed by polymerase chain reaction-denaturing gradient gel electrophoresis, revealing the presence of various gram-negative bacterial consortia.  相似文献   
7.
Bioaerosols significantly affect atmospheric processes while they undergo long-range vertical and horizontal transport and influence atmospheric chemistry and physics and climate change. Accumulating evidence suggests that exposure to bioaerosols may cause adverse health effects, including severe disease. Studies of bioaerosols have primarily focused on their chemical composition and largely neglected their biological composition and the negative effects of biological composition on ecosystems and human health. Here, current molecular methods for the identification, quantification, and distribution of bioaerosol agents are reviewed. Modern developments in environmental microbiology technology would be favorable in elucidation of microbial temporal and spatial distribution in the atmosphere at high resolution. In addition, these provide additional supports for growing evidence that microbial diversity or composition in the bioaerosol is an indispensable environmental aspect linking with public health.  相似文献   
8.
The diversion of biodegradable waste from landfill is of key importance in developing a sustainable waste strategy for the next decade and beyond. The proliferation of waste treatment technologies such as Mechanical Biological Treatment, Anaerobic Digestion and Composting will be paramount in achieving this strategic goal. This paper evaluates the scientific information needed to undertake an effective assessment of the potential public health risks from exposure to bioaerosols in the vicinity of commercial composting activities. Knowledge gaps currently exist in the scientific and regulatory community that limit our ability to effectively characterise source-term emissions, develop reliable dose–response data and accurately model the dispersion of bioaerosols. Consequently reliable risk estimates cannot be developed to inform the management of these potential risks. This uncertainty may prove a barrier to progress in achieving waste diversion and composting targets in Wales and the rest of the UK. A robust and extensive evidence base is required to inform the risk assessment process. This paper advocates the need for further, more focussed research into hazard characterisation of viable and non-viable organisms, improved dose–response data, exposure assessment techniques and an evaluation of the existing risk control and mitigation measures currently adopted. It is hoped that his will enable effective, timely and proportional risk management and mitigation measures to be developed that will foster the confidence required in composting technologies to achieve waste diversion targets and develop sustainable waste strategies.  相似文献   
9.
There is increasing concern about the exposure to fungal aerosols in occupational environments and associated respiratory allergic diseases and asthma. A large number of people work in cattle sheds around the world, pulmonary function impairments and higher frequency of respiratory symptoms have been reported in dairy farmers; however, it appears that adequate information on the fungal aerosols from the cattle sheds are largely lacking. Volumetric assessment of airborne culturable and nonculturable fungal spores was performed in two sections of a large rural indoor cattle shed of West Bengal, India for 2 consecutive years. An Andersen Two Stage Viable Sampler was used for sampling culturable fungi and a Burkard Personal Slide Sampler was used to collect the total airborne fungal spores including both the culturable and nonculturable types. A total of 31 spore types and 35 types of viable colony-forming units were recorded. Average concentration range of total fungal spores was 233-2985/m(3) and concentration of viable colony-forming units ranged between 165 and 2225 CFU/m(3). Burkard Sampler showed higher frequencies of Aspergilli/Penicilli, Cladosporium, Alternaria, and smut spores. Andersen Sampler showed the prevalence of Aspergillus niger, Aspergillus flavus and Cladosporium cladosporioides colonies. Some recorded fungi were earlier reported as allergenic, toxic, and pathogenic for occupational workers as well as cattle population. Higher concentration levels of airborne total and culturable fungal spores were recorded during the months of November through February (winter) and June through September (late summer and rainy season).  相似文献   
10.
This study aimed to evaluate the suitability of two bioaerosol generation systems(dry and wet generation) for the aerosolization of microorganisms isolated from the International Space Station, and to calibrate the produced bioaerosols to fulfill the requirements of computational fluid dynamics model(CFD) validation. Concentration, stability, size distribution, agglomeration of generated bioaerosol and deposition of bioaerosols were analyzed. In addition, the dispersion of non-viable particles in the air was studied.Experiments proved that wet generation from microbial suspensions could be used for the production of well-calibrated and stabile bioaerosols for model validation. For the simulation of the natural release of fungal spores, a dry generation method should be used. This study showed that the used CFD model simulated the spread of non-viable particles fairly well. The mathematical deposition model by Lai and Nazaroff could be used to estimate the deposition velocities of bioaerosols on surfaces, although it somewhat underestimated the measured deposition velocities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号