首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
  国内免费   4篇
环保管理   3篇
综合类   7篇
基础理论   2篇
污染及防治   7篇
  2023年   1篇
  2020年   1篇
  2018年   3篇
  2012年   1篇
  2011年   3篇
  2009年   1篇
  2008年   1篇
  2007年   2篇
  2006年   1篇
  2002年   2篇
  2001年   2篇
  1997年   1篇
排序方式: 共有19条查询结果,搜索用时 93 毫秒
1.
A 13.4 L biofilter treating an off-gas stream supplemented with methanol under two different situations was studied in terms of MeOH removal efficiency, microbial ecology and odor removal. During Period 1 (P1) the reactor was packed with wood bark chips with no pH control, treating an off-gas resulting from the aerobic chamber of a membrane biological reactor treating sewage and located outdoor, whereas during Period 2 (P2) a compressed air stream fed with MeOH was treated using PVC rings and maintaining pH at neutral values. Both systems operated at 96 g MeOH m−3 h−1 achieving removal efficiencies of around 90% during P1 and 99.9% during P2. The relative activity of biomass developed in both systems was assessed using respirometric analysis with samples obtained from both biofilms. Higher biomass activity was obtained during P2 (0.25-0.35 kg MeOH kg−1 VSS d−1) whereas 1.1 kg MeOH kg−1 VSS d−1 was obtained in the case of P1. The application of molecular and microscopic techniques showed that the eukaryotes were predominant during P1, being the yeast Candida boidinii the most abundant microorganism. A specific Fluorescence in situ hybridization probe was designed for C. boidinii and tested successfully. As a result of the neutral pH, a clear predominance of prokaryotes was detected during P2. Interestingly, some anaerobic bacteria were detected such as Desulfovibrio, Desulfobacteraceae species and also some archaea such as Methanosarcina.  相似文献   
2.
For biofilters treating waste gases containing volatile organic compounds(VOCs), biomass accumulation is a common problem which will induce bed clogging and significant decrease in VOCs removal efficiency during long-term operation. In this study, ozone injection was developed as a biomass control strategy, and its effects on the biofilter performance and the microbial community structure were investigated in long-term operation. Two biofilters,identified as BF1 and BF2, were operated continuously for 160 days treating gaseous toluene under the same conditions, except that 200 mg/m3 ozone was continuously injected into BF1 during days 45–160. During the operation period, ozone injection did not change the toluene removal efficiency, while the pressure drop of BF1 with ozone injection was significantly lowered compared with BF2. The wet biomass accumulation rate of BF1 was 11 g/m~3/hr, which was only46% of that in BF2. According to the carbon balance result, ozone injection also increased the toluene mineralization rate from 83% to 91%, which could be an important reason for the low biomass accumulation. The PMA-q PCR result indicated that ozone injection increased the microbial viability of the biofilm. The high-throughput sequencing result also revealed that the dominant phyla and genera were not changed significantly by ozone injection, but some ozonetolerant genera such as Rhodanobacter, Dokdonella and Rhodococcus were enhanced by ozone exposure. All the results verified that ozone injection is capable of sustaining the long-term performance of biofilters by lowering the biomass accumulation, increasing the microbial viability and changing the microbial community structure.  相似文献   
3.
In this work the variation in the elimination capacity of a biofilter as a function of the gas flow and toluene concentration was studied. A bioreactor 0.75 m high x 14.5 cm diameter was used, divided into three equal stages, using compost to support the microorganisms, and sea shells to control the pH. The biofiltration of toluene was evaluated for flows between 0.12 and 0.73 m(3)h(-1) in a concentration range of 1-3.2 gm(-3). It was observed that on increasing the toluene inlet load by 90% (from 37 to 70 gm(3)h(-1)), the conversion by the biofilter varied by only 5% (from 98% to 93%). The biofiltration system used achieved elimination capacities of up to 82 gm(-3)h(-1) for a toluene load of 100 gm(-3)h(-1).  相似文献   
4.
生物法降解低浓度含甲苯废气的研究   总被引:3,自引:1,他引:3  
筛选出以甲苯为唯一碳源的高效降解甲苯的假单孢菌Pseudmonas sp.ZD5,并设计生物滤池装置,研究了温度为10-50℃、相对湿度为50%-80%、人口甲苯浓度为1000-4500mg/m^3、气流量为0.3-0.7m^3/h的操作条件对甲苯降解率的影响,得出甲苯最高降解率为89.7%,表明此细菌降解低浓度甲苯废气有较好的效果。  相似文献   
5.
● Biofilm formation was enhanced by exogenous AHLs. ● EPS production and microbial adhesive strength of biofilm were promoted. ● Exogenous AHLs improved the performance of biofilters treating toluene. Biofilters are typical biofilm reactors, and they usually have poor biofilm formation resulting in limited reactor performance. Exogenous acylated homoserine lactones (AHLs) can enhance biofilm formation in many bioreactors based on quorum sensing regulation. However, their effect on biofilm in biofilters utilized for volatile organic compound (VOC) removal is unknown and needs to be investigated. In this study, the effects of the exogenous AHLs on biofilters for gaseous toluene removal were investigated. Analysis of biofilms in biofilters showed that the addition of exogenous AHLs considerably enhanced biofilm growth; the average biofilm concentration increased by 18%. Furthermore, the average biofilm coverage proportions in biofilters with and without exogenous AHLs were 17 % and 13 %, respectively, demonstrating the positive effect of exogenous AHLs on biofilm coverage. In particular, exogenous AHLs promoted the production of extracellular polymeric substances and the microbial adhesive strength of the biofilm. In addition, the exogenous AHLs showed no significant effect on the gaseous toluene removal efficiency of the biofilter. These results show that exogenous AHLs can enhance biofilm formation and can guide the application of exogenous AHLs in VOC biofilters.  相似文献   
6.
生物滤塔除臭技术在污水处理厂的应用   总被引:1,自引:1,他引:1  
陈杏 《环境科技》2009,22(1):43-45
生物滤塔除臭技术在污水处理厂中应用广泛。文章通过对实际案例运行情况的分析,研究了几个主要因素变化对除臭效率的影响。在温度为22℃,温度〉95%,pH值为6.6左右且进气流量及浓度稳定的情况下,生物滤塔的除臭效率可达96%以上,平均净化效率达85%以上,净化后的气体达到《恶臭污染物排放标准》二级标准。  相似文献   
7.
生物膜填料床内废气净化的理论模型   总被引:2,自引:0,他引:2  
介绍了废气生物净化技术的基本原理,并对废气生物净化技术中的生物过滤法和生物滴滤法的理论模型研究进展进行了综述,探讨了理有理论模型存在的主要问题。  相似文献   
8.
Emerging water contaminants derived from unleaded gasoline such as methyl tert-butyl ether (MTBE), ethyl tert-butyl ether (ETBE) and tert-amyl methyl ether (TAME), are in need of effective bioremediation technologies for restoring water resources. In order to design the conditions of a future groundwater bioremediating biofilter, this work assesses the potential use of Acinetobacter calcoaceticus M10, Rhodococcus ruber E10 and Gordonia amicalis T3 for the removal of MTBE, ETBE and TAME in consortia or as individual strains. Biofilm formation on an inert polyethylene support material was assessed with scanning electron microscopy, and consortia were also analysed with fluorescent in situ hybridisation to examine the relation between the strains. A. calcoaceticus M10 was the best coloniser, followed by G. amicalis T3, however, biofilm formation of pair consortia favoured consortium M10-E10 both in formation and activity. However, degradation batch studies determined that neither consortium exhibited higher degradation than individual strain degradation. The physiological state of the three strains was also determined through flow cytometry using propidium iodide and 3′-dihexylocarbocyanine iodide thus gathering information on their viability and activity with the three oxygenates since previous microbial counts revealed slow growth. Strain E10 was observed to have the highest physiological activity in the presence of MTBE, and strain M10 activity with TAME was only maintained for 24 h, thus we believe that biotransformation of MTBE occurs within the active periods established by the cytometry analyses. Viable cell counts and oxygenate removal were determined in the presence of the metabolites tert-butyl alcohol (TBA) and tert-amyl alcohol (TAA), resulting in TBA biotransformation by M10 and E10, and TAA by M10. Our results show that A. calcoaceticus M10 and the consortium M10-E10 could be adequate inocula in MTBE and TAME bioremediating technologies.  相似文献   
9.
One of the main challenges that face successful biofiltration is the erratic loading pattern and long starvation periods. However, such patterns are common in practical applications. In order to provide long-term stable operation of a biofilter under these conditions, a cyclic adsorption/desorption beds system with flow switching was installed prior to a biofilter. Different square waves of a mixture containing n-hexane and benzene at a 2:1 ratio were applied to the cyclic adsorption/desorption beds and then fed to a biofilter. The performance of this integrated system was compared to a biofilter unit receiving the same feed of both VOCs. The cyclic adsorption/desorption beds unit successfully achieved its goal of stabilizing erratic loading even with very sharp peaks at the influent concentration equalizing influent concentrations ranging from 10-470 ppmv for n-hexane to 30-1410 ppmv for benzene. The study included different peak concentrations with durations ranging from 6 to 20 min. The cyclic beds buffered the fluctuating influent load and the followed biofilter had all the time a continuous stable flow. Another advantage achieved by the cyclic adsorption/desorption beds was the uninterrupted feed to the biofilter even during the starvation where there was no influent in the feed. The results of the integrated system with regard to removal efficiency and kinetics are comparable to published results with continuous feed studies at the same loading rates. The removal efficiency for benzene had a minimum of 85% while for n-hexane ranged from 50% to 77% according to the loading rate. The control unit showed very erratic performance highlighting the benefit of the utilization of the cyclic adsorption/desorption beds. The biofilter was more adaptable to concentration changes in benzene than n-hexane.  相似文献   
10.
Sulfur dioxide(SO_2) and benzene homologs are frequently present in the off-gas during the process of sewage sludge drying. A laboratory scale biofilter was set up to co-treat SO_2 and o-xylene in the present study. SO_2 and o-xylene could be removed simultaneously in a single biofilter. Their concentration ratio in the inlet stream influenced the removal efficiencies. It is worth noting that the removal of SO_2 could be enhanced when low concentrations of o-xylene were introduced into the biofilter. Pseudomonas sp., Paenibacillus sp., and Bacillus sp. were the main functional bacteria groups in the biofilter. Sulfur-oxidizing bacteria(SOB) and o-xylene-degrading bacteria(XB) thrived in the biofilter and their counts as well as their growth rate increased with the increase in amount of SO_2 and o-xylene supplied. The microbial populations differed in counts and species due to the properties and components of the compounds being treated in the biofilter. The presence of mixed substrates enhanced the diversity of the microbial population. During the treatment process, bioaerosols including potentially pathogenic bacteria, e.g., Acinetobacter lwoffii and Aeromonas sp., were emitted from the biofilter. Further investigation is needed to focus on the potential hazards caused by the bioaerosols emitted from waste gas treatment bioreactors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号