首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
  国内免费   1篇
环保管理   1篇
综合类   1篇
  2020年   1篇
  2009年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
In an era of electronics, recovering the precious metal such as gold from ever increasing piles of electronic-wastes and metal-ion infested soil has become one of the prime concerns for researchers worldwide. Biological mining is an attractive, economical and non-hazardous to recover gold from the low-grade auriferous ore containing waste or soil. This review represents the recent major biological gold retrieval methods used to bio-mine gold. The biomining methods discussed in this review include, bioleaching, bio-oxidation, bio-precipitation, bio-flotation, bio-flocculation, bio-sorption, bio-reduction, bio-electrometallurgical technologies and bioaccumulation. The mechanism of gold biorecovery by microbes is explained in detail to explore its intracellular mechanistic, which help it withstand high concentrations of gold without causing any fatal consequences. Major challenges and future opportunities associated with each method and how they will dictate the fate of gold bio-metallurgy from metal wastes or metal infested soil bioremediation in the coming future are also discussed. With the help of concurrent advancements in high-throughput technologies, the gold bio-exploratory methods will speed up our ways to ensure maximum gold retrieval out of such low-grade ores containing sources, while keeping the gold mining clean and more sustainable.  相似文献   
2.
Bacterial strains were isolated from sediment samples from the Thames River. Successive transfer growth of the various strains on nutrient agar containing increasing concentrations of AgNO3 revealed that three of the bacterial isolates were found to be capable of tolerating high concentrations of AgNO3 ranging from 20 to 80 mM on a solid medium and up to 10 mM AgNO3 in liquid medium. Molecular characterization and identification based on 16S rDNA gene sequencing of three strains of bacteria that are tolerant to silver nitrate showed that the major tolerant strains include the superbug, Shewanella oneidensis, Pseudomonas sp. and Bacillus sp. Protein extraction and two-dimensional (2D) sodium dodecyl sulfate SDS-polyacrylamide gel electrophoresis (PAGE) of the protein extracts in bacteria exposed to very high concentrations of AgNO3 revealed a general reduction in the number of expressed proteins, although two protein spots were conspicuously over expressed in the exposed bacteria compared to control. The N-terminal amino acid sequence analysis of the protein spots identified the major up-regulated proteins as the outer membrane protein To1C (45.2 kDa) and the structural protein of the flagellar filament, flagellin (28.34 kDa), encoded for by the to1C and fliC genes, respectively. The roles of these genes in a number of multi-drug resistant pathogen and potentials for biotechnological applications in toxic metal control for treatment of contaminated ecosystems and biomining were discussed.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号