首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   48篇
  免费   0篇
  国内免费   6篇
安全科学   31篇
环保管理   1篇
综合类   20篇
污染及防治   1篇
评价与监测   1篇
  2023年   1篇
  2022年   1篇
  2021年   3篇
  2020年   3篇
  2018年   2篇
  2017年   2篇
  2016年   1篇
  2015年   8篇
  2014年   1篇
  2013年   2篇
  2012年   2篇
  2011年   3篇
  2010年   2篇
  2009年   2篇
  2008年   2篇
  2007年   3篇
  2003年   2篇
  2002年   1篇
  2001年   4篇
  2000年   2篇
  1999年   2篇
  1998年   2篇
  1997年   1篇
  1994年   1篇
  1992年   1篇
排序方式: 共有54条查询结果,搜索用时 15 毫秒
1.
叙述了沈阳市现有中、小型燃煤锅炉除尘脱硫装置存在的主要问题 ,并提出了解决这些问题应采取的技术及管理措施。  相似文献   
2.
To overcome the shortcomings of phosphorus-containing compounds (PCCs, not widely used) in fire suppression, the dry water powder containing phosphoric acid was analyzed for a new fire suppressant (SiO2-P). First, the fine conditions (solid-to-liquid ratio, stirring time and stirring speed) were determined to prepare the new powder. The particle size distributions and XPS of SiO2-P powder were analyzed. The TG tests were conducted to study the decomposition of powder, and there was a major decomposition peak. Second, the extinguishing time of SiO2-P powder was tested, which showed that the SiO2-P powder containing phosphorus species could significantly improve the fire suppression ability. In addition, the kinetic parameters of powder decomposition reaction were determined by genetic algorithm based on TG results. Last, based on the decomposition products and kinetic parameters, the burning velocity and mass fraction of free radicals of CH4/air flame with SiO2-P powder addition were studied theoretically. The results indicated that SiO2-P powder had great ability of reducing the burning velocity and scavenging free radicals. Furthermore, the suppression effects were analyzed, which indicated that the cooperation of H2O and P suppression effect dominated the suppression mechanism and resulted in the good suppression efficiency.  相似文献   
3.
党晓贝  何亚平  汪箭 《火灾科学》2018,27(4):213-221
采用实验和FDS数值模拟相结合的方法,探讨了边沿高度对油池火燃烧特性的影响。在实验部分,研究了燃烧速率和表观火焰高度随边沿高度的变化趋势,并分别分析了各个阶段的热反馈机制。在实验获得不同尺度、边沿高度正庚烷油池火燃烧速率的前提下,建立相应尺度的不同边沿高度油池火的Fire Dynamics Simulator(FDS)计算模型以针对火焰高度进行了数值模拟研究,分析了实际火焰高度、火焰下探高度随边沿高度的变化趋势,并提出了相关的无量纲拟合式。  相似文献   
4.
格栅类通透性吊顶对水喷淋控火性能影响的实验研究   总被引:1,自引:1,他引:0  
高兵  姚斌 《火灾科学》2008,17(4):244-249
通过实验研究了格栅类通透性吊顶对水喷淋控火性能的影响,并利用燃料燃尽时间来计算控火有效性因子来量化这种影响.研究结果表明:格栅会降低水喷淋控火性能,与格栅类吊顶形式、喷头安装高度和工作压力流量有关.在确定的吊顶形式和尺寸下,存在着对控火性能影响最大的喷头安装高度.在实际工程应用中应根据具体格栅特性,合理设计喷头安装高度,以降低格栅的不利影响,保证水喷淋的控火有效性.  相似文献   
5.
"燃烧假人"测试方法中燃烧系统设计研究   总被引:1,自引:0,他引:1  
“燃烧假人”测试方法中火场环境生成是对服装整体阻燃性能进行定量评估的前提,而燃烧系统设计是实现具有可重复性、一致性、均匀性等特点火场环境的关键。本文对燃烧系统的需求进行了分析,对其构成及设计思路进行了研究,提出了一种解决方案。  相似文献   
6.
The energy sector in Poland is the source of 81% of greenhouse gas (GHG) emissions. Poland, among other European Union countries, occupies a leading position with regard to coal consumption. Polish energy sector actively participates in efforts to reduce GHG emissions to the atmosphere, through a gradual decrease of the share of coal in the fuel mix and development of renewable energy sources. All evidence which completes the knowledge about issues related to GHG emissions is a valuable source of information. The article presents the results of modeling of GHG emissions which are generated by the energy sector in Poland. For a better understanding of the quantitative relationship between total consumption of primary energy and greenhouse gas emission, multiple stepwise regression model was applied. The modeling results of CO2 emissions demonstrate a high relationship (0.97) with the hard coal consumption variable. Adjustment coefficient of the model to actual data is high and equal to 95%. The backward step regression model, in the case of CH4 emission, indicated the presence of hard coal (0.66), peat and fuel wood (0.34), solid waste fuels, as well as other sources (− 0.64) as the most important variables. The adjusted coefficient is suitable and equals R2 = 0.90. For N2O emission modeling the obtained coefficient of determination is low and equal to 43%. A significant variable influencing the amount of N2O emission is the peat and wood fuel consumption.  相似文献   
7.
The energy sector in Poland is the source of 81% of greenhouse gas (GHG) emissions. Poland, among other European Union countries, occupies a leading position with regard to coal consumption. Polish energy sector actively participates in efforts to reduce GHG emissions to the atmosphere, through a gradual decrease of the share of coal in the fuel mix and development of renewable energy sources. All evidence which completes the knowledge about issues related to GHG emissions is a valuable source of information. The article presents the results of modeling of GHG emissions which are generated by the energy sector in Poland. For a better understanding of the quantitative relationship between total consumption of primary energy and greenhouse gas emission, multiple stepwise regression model was applied. The modeling results of CO2 emissions demonstrate a high relationship (0.97) with the hard coal consumption variable. Adjustment coefficient of the model to actual data is high and equal to 95%. The backward step regression model, in the case of CH4 emission, indicated the presence of hard coal (0.66), peat and fuel wood (0.34), solid waste fuels, as well as other sources (-0.64) as the most important variables. The adjusted coefficient is suitable and equals R2 = 0.90. For N2O emission modeling the obtained coefficient of determination is low and equal to 43%. A significant variable influencing the amount of N2O emission is the peat and wood fuel consumption.  相似文献   
8.
A methodology to determine the laminar burning velocity from closed vessel gas explosions is explored. Unlike other methods which have been used to measure burning velocities from closed vessel explosions, this approach belongs to the category which does not involve observation of a rapidly moving flame front. Only the pressure–time curve is required as experimental input. To verify the methodology, initially quiescent methane–air mixtures were ignited in a 20-l explosion sphere and the equivalence ratio was varied from 0.67 to 1.36. The behavior of the pressure in the vessel was measured as a function of time and two integral balance models, namely, the thin-flame and the three-zone model, were fitted to determine the laminar burning velocity. Data on the laminar burning velocity as a function of equivalence ratio, pressure and temperature, measured by a variety of other methods have been collected from the literature to enable a comparison. Empirical correlations for the effect of pressure and temperature on the laminar burning velocity have been reviewed and two were selected to be used in conjunction with the thin-flame model. For the three-zone model, a set of coupled correlations has been derived to describe the effect of pressure and temperature on the laminar burning velocity and the laminar flame thickness. Our laminar burning velocities are seen to fall within the band of data from the period 1953–2003. A comparison with recent data from the period 1994–2003 shows that our results are 5–10% higher than the laminar burning velocities which are currently believed to be the correct ones for methane–air mixtures. Based on this observation it is concluded that the methodology described in this work should only be used under circumstances where more accurate methods can not be applied.  相似文献   
9.
Spill fires are common during oil product storage and transportation after a loss of containment. Since the burning fuel is moving and the fuel depth is quite shallow, the burning rate in a spill fire is different from that of a pool fire with a static burning zone. Unlike pool fires, which have been studied for decades and have well-established correlations for burning rate, research on spill fires is inadequate. In this paper, continuously released n-heptane spill fire experiments were conducted on open water surfaces with varying fuel discharge rates. The pool diameters were measured, and the spill fire burning rates were estimated based on a dynamic balance between fuel supply and combustion. The burning rates in n-heptane pool fires from the literature were reviewed and compared with the estimated burning rates in spill fires of the same dimension. The spill fire burning rate was found to be close to that in a pool fire during the initial burning phase but lower than that in a bulk burning pool fire and that in a “fuel-level-controlled” pool fire. The distinction between the burning rates of spill fires and pool fires is explained by the heat balance analysis of the fuel layer. A model for the spill fire burning rate was proposed accordingly. The results calculated with the presented model are closer to the measured data than those calculated with pool fire models.  相似文献   
10.
The liquid fuel safety issues on fuel storage, transportation and processing have gained most attention because of the high fire risk. In this paper, some 0# diesel pool fire experiments with different diameters (0.2–1 m) were conducted with initial fuel thicknesses of 2 cm and 4 cm, respectively, to obtain liquid fuel combustion characteristics. Some key parameters including mass burning rate, flame height and the flame radiative heat flux, associated with fire risk, were investigated and determined. Subsequently, a detail quantitative risk assessment framework for 0# diesel pool fire is proposed based on the 0# diesel burning characteristics. In the framework, the probability of personal dead and the facility failure are calculated by the vulnerability models, respectively. In the end, 10 special tank fire scenarios were selected to show the whole risk calculation process. The tank diameter and the distance to pool fires were paid more attention in the cases. The safety distances in the cases are provided for the persons and nearby facilities, respectively. The paper enriches the basic experimental data and the provided framework is useful to the management of 0# diesel tank areas.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号