首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   0篇
  国内免费   1篇
综合类   1篇
  2021年   1篇
排序方式: 共有1条查询结果,搜索用时 0 毫秒
1
1.
As an aliphatic amino acid, cysteine (CYS) is diffuse in the living cells of plants and animals. However, little is known of its role in the reactivity of nano-sized zero-valent iron (NZVI) in the degradation of pollutants. This study shows that the introduction of CYS to the NZVI system can help improve the efficiency of reduction, with 30% more efficient degradation and a reaction rate constant nine times higher when nitrobenzene (NB) is used as probe compound. The rates of degradation of NB were positively correlated with the range of concentrations of CYS from 0 to 10 mmol/L. The introduction of CYS increased the maximum concentration of Fe(III) by 12 times and that of Fe(II) by four times in this system. A comparison of systems featuring only CYS or Fe(II) showed that the direct reduction of NB was not the main factor influencing its CYS-stimulated removal. The reduction in the concentration of CYS was accompanied by the generation of cystine (CY, the oxidized form of cysteine), and both eventually became stable. The introduction of CY also enhanced NB degradation due to NZVI, accompanied by the regeneration of CYS. This supports the claim that CYS can accelerate electron transfer from NZVI to NB, thus enhancing the efficiency of degradation of NB.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号