首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   92篇
  免费   1篇
  国内免费   3篇
安全科学   8篇
废物处理   2篇
环保管理   23篇
综合类   40篇
基础理论   4篇
污染及防治   13篇
评价与监测   5篇
社会与环境   1篇
  2022年   2篇
  2021年   2篇
  2020年   2篇
  2019年   1篇
  2018年   1篇
  2016年   2篇
  2014年   4篇
  2013年   3篇
  2012年   6篇
  2011年   12篇
  2009年   10篇
  2008年   4篇
  2007年   5篇
  2006年   10篇
  2005年   2篇
  2004年   2篇
  2003年   3篇
  2002年   4篇
  2001年   4篇
  1999年   3篇
  1998年   5篇
  1997年   3篇
  1996年   4篇
  1994年   1篇
  1993年   1篇
排序方式: 共有96条查询结果,搜索用时 15 毫秒
1.
水泥负载TiO2光催化降解染料水溶液的研究   总被引:18,自引:0,他引:18  
研究了以TiO2为催化剂,且将TiO2涂布在模拟工业水处理浅池的水泥质池底表面,以直管高压汞灯为光源,对有机染料酸性玫瑰红B和晒化绿B进行光催化降解的可行性。结果表明,在实验条件下,本系统对以上染料有显著的光降解作用,浓度为25mg/L的上述二种染料溶液,经30min光照,其降解率分别达88.2%,此外,还探讨了染料浓度,染料体积、染料溶液PH值等因素对光降解的影响。  相似文献   
2.
提出了一个利用碳纤维混凝土与普通混凝土进行复合,实现结构安全监测的技术方法。根据普通混凝土与碳纤维混凝土之间良好的亲和能力,将碳纤维混凝土浇铸在结构承载的薄弱部分,利用碳纤维混凝土的压敏特性,可以对该部分的服役状态进行监测,获得结构的变形情况;另一方面,利用碳纤维混凝土的基本特性,还可以适当改善结构的承载强度。笔者所提出的复合结构既具有普通混凝土结构的基本特征,又赋予了结构的自我监测功能,比较有效地克服了全碳纤维混凝土结构建造所面临的电阻率波动、骨料石子影响和建设成本等几个方面的技术问题。  相似文献   
3.
水泥行业二氧化碳排放统计——以贵阳市为例   总被引:1,自引:1,他引:0  
本文从水泥行业二氧化碳的排放统计出发,研究二氧化碳排放的重要影响因素、二氧化碳排放的指标体系,从而得出一套水泥行业二氧化碳排放统计的核算方法.以贵阳市为例,从三种不同活动水平的统计数据对水泥行业生产工艺过程中产生的CO2排放量进行估算比较,验证统计核算方法的有效性,为贵阳市乃至全国水泥行业CO2的减排提供一个可行的科学依据.  相似文献   
4.
This paper performs a cost-effectiveness analysis of some of the best available technologies (BAT) that can contribute to decreasing the energy consumption and CO2 emissions in the European Union’s (EU27) cement industry. Several capital budgeting decision criteria have been used (the payback period, the net present value and the internal rate of return) to study whether or not an investment should be considered worthwhile. The results show that, independent of the capital budgeting decision criteria used, the number of cost-effective retrofitting possibilities available is large compared to the rate of improvements that the industry undertakes annually. This shows the insensitivity of the industry to financial criteria when it comes to making their investment decisions. The possible thermal energy improvement in the clinker production, if all these BATs were implemented, has been quantified to be around 10%. This achievement would place the cement industry in the upper bound of the benchmark range for clinker manufacture. However considering the delays observed nowadays in terms of diffusion of BATs in the cement industry, it requires a conducive policy environment that combines support for both technology development and to their deployment.  相似文献   
5.
根据我国水泥工业的现状及存在的主要问题,分析了水泥行业清洁生产的内容、指标,提出了推行水泥行业的清洁生产,不仅可以加快产业结构调整和新型干法水泥的发展,同时也是保护环境的重要途径。  相似文献   
6.
• Washed MSWI fly ash was used as partial cement or sand substitute. • Sand replacing is beneficial for strength, while cement replacement reduces strength. Cementing efficiency factor and mortar pore structure explain the strength results. • Health risk assessment was conducted for MSWI fly ash blended cement mortar. • CR and HI contributed by different exposures and heavy metals were analyzed. The strength of cement substituted mortar decreases with the increase in fly ash amount, whereas the strength increases when the fly ash is blended as sand substitute. A mortar with highest strength (compressive strength= 30.2 Mpa; flexural strength= 7.0 Mpa) was obtained when the sand replacement ratio was 0.75%. The k value (cementing efficiency) of fly ash varied between 0.36 and 0.15 for the fly ash fraction in binder between 5% and 25%. The k values of fly ash used for sand replacement were all significantly above that used for cement substitution. The macropores assigned to the gaps between particles decreased when the fly ash was used as sand replacement, providing an explanation for the strength enhancement. The waste-extraction procedure (toxicity-sulphuric acid and nitric acid method (HJ/T 299-2007)) was used to evaluate metal leaching, indicating the reuse possibility of fly ash blended mortar. For the mortar with the mass ratio of fly ash to binder of 0.5%, the carcinogenic risks (CR) and non-carcinogenic hazard quotient (HQ) in sensitive scenario for blended mortar utilization were 9.66 × 10-7 and 0.06, respectively; these results were both lower than the threshold values, showing an acceptable health risk. The CR (9.89 × 10-5) and HQ (3.89) of the non-sensitive scenario for fly ash treatment exceeded the acceptable threshold values, indicating health risks to onsite workers. The main contributor to the carcinogenic and non-carcinogenic risk is Cr and Cd, respectively. The CR and HQ from inhalation was the main route of heavy metal exposure.  相似文献   
7.
A country-level stock and flow model for cement, an important construction material, was developed based on a material flow analysis framework. Using this model, the contemporary cement cycle of the United States was constructed by analyzing production, import, and export data for different stages of the cement cycle. The United States currently supplies approximately 80% of its cement consumption through domestic production and the rest is imported. The average annual net addition of in-use new cement stock over the period 2000–2004 was approximately 83 million metric tons and amounts to 2.3 tons per capita of concrete. Nonfuel carbon dioxide emissions (42 million metric tons per year) from the calcination phase of cement manufacture account for 62% of the total 68 million tons per year of cement production residues. The end-of-life cement discards are estimated to be 33 million metric tons per year, of which between 30% and 80% is recycled. A significant portion of the infrastructure in the United States is reaching the end of its useful life and will need to be replaced or rehabilitated; this could require far more cement than might be expected from economic forecasts of demand for cement.  相似文献   
8.
Paper recycling is an environmental important activity that is carried out in all the countries, but during the recycling process a paper waste is produced. Generally these wastes are placed in landfill sites but it is possible to profit it as secondary fuel and raw material in manufacture furnaces.

In this work the combustion of the waste papers with cement and ceramic raw material has been studied with the objective to analyse the interaction of these substances with the emitted pollutants like PAHs and PCDD/Fs.

The results of the study show that the presence of inorganic material produces an increment in the lighter PAH emission but chlorinated compounds are not affected. The PCDD/F emission level found in the combustion of this waste is quite low compared with other wastes subjected to similar conditions.  相似文献   

9.
Solid waste management is one of the major environmental concerns around the world. Cement kiln dust (KKD), also known as by-pass dust, is a by-product of cement manufacturing. The environmental concerns related to Portland cement production, emission and disposal of CKD is becoming progressively significant. CKD is fine-grained, particulate material chiefly composed of oxidized, anhydrous, micron-sized particles collected from electrostatic precipitators during the high temperature production of clinker. Cement kiln dust so generated is partly reused in cement plant and landfilled. The beneficial uses of CKD are in highway uses, soil stabilization, use in cement mortar/concrete, CLSM, etc.Studies have shown that CKD could be used in making paste/mortar/concrete. This paper presents an overview of some of the research published on the use of CKD in cement paste/mortar/concrete. Effect of CKD on the cement paste/mortar/concrete properties like compressive strength, tensile strength properties (splitting tensile strength, flexural strength and toughness), durability (Freeze–thaw), hydration, setting time, sorptivity, electrical conductivity are presented. Use of CKD in making controlled low-strength materials (CLSM), asphalt concrete, as soil stabilizer, and leachate analysis are also discussed in this paper.  相似文献   
10.
韶钢水泥厂在进行干法生产时,会产生大量的粉尘,严重影响生产和厂区周围居民的正常生活,危害严重。通过一些综合防治措施,不仅保护了环境,而且还可回收数量可观的有价原料、成品或半成品。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号