首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   3篇
  国内免费   10篇
综合类   24篇
污染及防治   2篇
  2015年   2篇
  2013年   2篇
  2012年   1篇
  2010年   2篇
  2009年   1篇
  2008年   3篇
  2007年   3篇
  2006年   3篇
  2005年   4篇
  2004年   3篇
  2003年   2篇
排序方式: 共有26条查询结果,搜索用时 15 毫秒
1.
温度对生物强化除磷工艺反硝化除磷效果的影响   总被引:8,自引:1,他引:7  
以处理城市污水的中试规模生物强化除磷A2/O活性污泥工艺系统为研究对象,考察了温度对系统COD去除和脱氮除磷效果的影响,特别是温度对活性污泥反硝化除磷性能的影响.结果表明,当温度从(30.9±0.8)℃降低到(9.1±0.6)℃时,A2/O系统的脱氮除磷效果显著下降,系统对TN和TP的污泥去除负荷明显下降.通过污泥反硝化除磷活性实验发现,随着温度的降低,系统中活性污泥的最大厌氧释磷速率、最大好氧吸磷速率和最大缺氧吸磷速率都降低.活性污泥中反硝化除磷菌(DPB)占聚磷菌(PAOs)总量的比例随温度降低稍有下降,但平均值仍维持在47.5%左右.用阿伦尼乌斯公式对实验结果进行拟合,得到系统中活性污泥聚磷菌厌氧释磷反应活化能Ea1为148.0 kJ· mol-1,聚磷菌好氧吸磷反应活化能Ea2为228.8 kJ·mol-1,发生在缺氧条件下反硝化除磷菌的吸磷反应活化能Ea3为315.8 kJ·mol-1.对不同温度下污泥絮体粒径分析结果表明,随温度降低,粒径分布更加集中,系统中活性污泥絮体颗粒平均粒径减小,不利于污泥絮体内部反硝化除磷缺氧微环境的形成.  相似文献   
2.
采用一种新型的多级A/O膜生物反应器处理污水,对该工艺的污泥活性进行了研究。结果表明,VSS/SS在实验过程中呈较弱的下降趋势,多级A/O池曝气室污泥比硝化速率逐室下降,但各缺氧室污泥比反硝化速率基本一致;污泥释磷、聚磷过程在30 min和1 h内基本完成,反硝化聚磷试验表明污泥中存在DPB的富集,反硝化作用是反硝化细菌与DPB共同作用的结果。  相似文献   
3.
一体化生物除磷脱氮技术--反硝化除磷   总被引:12,自引:5,他引:12  
介绍了一种高效、节能的生物除磷脱氮技术-反硝化除磷。通过与传统生物除磷技术的比较,总结反硝化除磷的机理、影响因素并探讨它在脱氮好氧颗粒污泥中的应用。  相似文献   
4.
反硝化聚磷菌的富集及富集污泥活性研究   总被引:2,自引:0,他引:2  
依据DPB原理,利用SBR动态反应器和静态释/聚磷装置。以A2/O厌氧段污泥为种泥,进行以硝酸盐为电子受体的反硝化聚磷菌的富集,并对富集有反硝化聚磷菌的污泥进行了反硝化聚磷活性性能考察。结果表明,利用硝酸盐为电子受体的反硝化聚磷菌存在于A2/O厌氧段污泥中,反硝化聚磷菌占总聚磷菌的比例为23%,该种污泥可作为反硝化聚磷工艺的种泥;由于常规的聚磷菌被淘汰聚磷菌的数量由6.8×107个/mL减少到1.1×103个/mL,但通过选择和富集聚磷菌总数由1.1×103个/mL增加到8.2×104个/mL,且反硝化聚磷菌占聚磷菌总数的比例也由23%提高到94%,磷酸盐去除率由最初的9.86%上升到95.2%,出水磷酸盐的浓度为0.79mg/L;通过改变进水中不同磷酸盐浓度验证体系处于稳定状态。  相似文献   
5.
反硝化除磷脱氮系统中DPB的驯化富集培养   总被引:2,自引:2,他引:0  
黄荣新  张杰  谌建宇 《环境科学》2010,31(5):1252-1256
反硝化同时脱氮除磷系统中反硝化除磷菌(DPB)的培养驯化状况,将直接影响污水中氮磷等营养元素的同时去除效率以及系统的高效稳定运行,为此本实验研究设计了一套以实际生活污水为处理对象的双污泥反硝化脱氮除磷工艺流程,采用逐渐过渡的培养方式,为DPB创造良好的厌氧/缺氧交替环境,即创造特定的适合DPB生存的环境条件让其进行自然选择,以筛选出来需要的DPB菌.结果表明,通过15d的间歇曝气的厌氧/好氧(A/O)运行方式可以对PAOs进行快速诱导;第二阶段,通过好氧曝气时间的逐渐减少,缺氧段投加硝酸氮的厌氧/好氧/缺氧(A/O/A)运行模式,25d左右可达到强化诱导反应器里面的DPB占PAOs的比例;最后让DPB在严格的厌氧/缺氧交替环境下进行富集培养19d,通过这种逐渐过渡培养的方式获得了对所需要的DPB菌的成功诱导富集,该菌的成功驯化培养为市政生活污水中的氮磷同时高效稳定去除提供了一种新方法.  相似文献   
6.
To supply the valuable operating parameters for the popular usage of the new denitrifying phosphors removal process, it is essential to study the dominant biochemical reactions and the characteristics of denitrifying phosphorus removing bacteria (DPB). Thus, parallel batch experiments using DPB sludge were carried out to assess the effect of substrates (sewage, HAc, and endogenous carbon source) on denitrifying dephosphorus removal efficiency in this study. The results showed that the initial specific phosphorus release rate increased with the high concentration of the short-chain volatile fatty acids ratio in the influent, and sufficient phosphorus was released by DPB. This improved the subsequent denitrification and phosphorus uptake efficiency. The specific endogenous denitrification mainly relies on the internal carbon source (PHB) stored by poly-P bacteria. Denitrifying phosphorus removing bacteria were very hungry when the internal PHB was consumed. Consequently, the specific endogenous denitrification rate was low and the phosphorus uptake did not happen. On the other hand, in the experiment, the denitrifying phosphorus removal performance under two temperature conditions (8–10°C and 25–26°C) was also investigated and analyzed. It was found that the lower temperature decreased the specific phosphorus release and uptake rate, but did not inhibit the denitrifying phosphorus removal completely. Therefore, the negative influence of the low temperature on the overall phosphorus removal was not significant. Translated from Acta Scientiae Circumstantiae, 2006, 26 (2): 186–192 [译自: 环境科学学报]  相似文献   
7.
低C/N条件下MUCT工艺的反硝化除磷特性   总被引:1,自引:0,他引:1  
尹军  王晓玲  吴相会  吴磊 《环境科学》2007,28(11):2478-2483
以C/N较低的污水为处理对象,重点研究和分析了MUCT工艺缺氧区的反硝化除磷特性.结果表明,①缺氧区1因为COD浓度相对较高,回流污泥中的硝酸盐氮优先被传统反硝化菌利用,不能作为DPB的电子受体,所以主要发生释磷反应;②缺氧区2内DPB利用厌氧段贮存大量PHB为碳源,以硝酸盐氮为电子受体进行吸磷,且吸磷量逐日提高,从最初的0 .93 mg/L增加至18 mg/L,缺氧吸磷率最终稳定在40%左右;③缺氧区3内,由于硝酸盐氮和COD浓度过低,进行无效释磷反应过程,释磷量在0 .27~3 mg/L之间;④系统对COD、TN、TP的去除率较高,出水TN和TP浓度分别在10 mg/L和0 .9 mg/L以下.  相似文献   
8.
杨庆娟  王淑莹  刘莹  袁志国  葛翀 《环境科学》2008,29(8):2249-2253
以实际生活污水为对象,研究了反硝化聚磷菌(DPB)的驯化培养以及A2N双污泥反硝化除磷系统的快速启动.采用先独立培养反硝化聚磷菌和好氧硝化生物膜再连续运行的方式成功地快速启动了A2N系统.采用污水处理厂除磷工艺中的活性污泥为种泥,在SBR系统中以先A/O(厌氧/好氧)后A/A(厌氧/缺氧)的方式运行,32 d成功地使反硝化聚磷菌成为优势菌属.在SBR反应器中,采用硝化效果较好的活性污泥为种泥,好氧硝化生物膜30 d挂膜成功,氨氮去除率稳定在99%以上.然后,A2N系统连续运行,11 d后系统反硝化除磷效果进入稳定状态,出水氨氮和正磷酸盐浓度均为0,硝态氮为10.26 mg/L ,出水COD为19.56 mg/L ,COD、氨氮、总氮和磷去除率分别为91%、100%、77%和100%,说明A2N系统具有很好的脱氮除磷效果,认为系统启动成功.  相似文献   
9.
原水碳源分子量分布及DPB效能对酸化时间的响应   总被引:1,自引:0,他引:1  
采用超滤-纳滤膜法对污水中碳源分子量(MW)进行切割试验,并测定各区间总有机碳(TOC)浓度以了解污水碳源组成特性;同时采用污水酸化技术,研究在不同酸化时间,碳源分子量分布的变化及对厌氧-膜好氧-反硝化(A2N)工艺中反硝化聚磷菌(DPB)用碳和净污效能的影响.结果表明,试验原水TOC为(58.3±2.83) mg /L,其中颗粒有机碳(POC)为(38.05±1.65)mg /L,占65.27%,剩余溶解有机碳(DOC)在分子量0.5kDa以上区间呈现“W”型分布,其中 MW>100kDa、10k~5kDa、1k~0.5kDa、MW<0.5kDa区间碳源分别占36.20%、12.05%、13.68%和29.83%.在不同酸化时间下,POC含量与DOC分布存在显著差异,在12h内酸化,可以有效将POC转化为DOC,且在14mg/L左右趋于平衡;DOC在大于0.5kDa区间上的分布呈现随时间而整体后移的趋势,在8h时碳源质量最优,其中MW<1kDa的小分子有机物高达17.30mg/L;此时,DPB污泥在厌氧池与缺氧池中的碳源利用率分别为 83.48%、79.59%,比0h时分别提高了23.56%、18.03%;TN、TP去除率分别提高了14.63%、16.98%.  相似文献   
10.
Effect of added carbon source and nitrate concentration on the denitrifying phosphorus removal by DPB sludge was systematically studied using batch experiments, at the same time the variation of ORP was investigated.Results showed that the denitrifying and phosphorus uptake rate in anoxic phase increased with the high initial anaerobic carbon source addition. However once the initial COD concentration reached a certain level, which was in excess to the PHB saturation of poly-P bacteria, residual COD carried over to anoxic phase inhibited the subsequent denitrifying phosphorus uptake. Simultaneously, phosphate uptake continued until all nitrate was removed, following a slow endogenous release of phosphate. High nitrate concentration in anoxic phase increased the initial denitrffying phosphorus rate. Once the nitrate was exhausted, phosphate uptake changed to release. Moreover, the time of this turning point occurred later with the higher nitrate addition. On the other hand, through on-line monitoring the variation of the ORP with different initial COD concentration, it was found ORP could be used as a control parameter for phosphorus release, but it is impossible to utilize ORP for controlling the denitrificaion and anoxic phosphorus uptake operations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号