首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
  国内免费   1篇
废物处理   1篇
环保管理   1篇
综合类   3篇
污染及防治   2篇
社会与环境   1篇
  2020年   1篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2008年   1篇
  2007年   1篇
  1996年   1篇
  1992年   1篇
排序方式: 共有8条查询结果,搜索用时 31 毫秒
1
1.
Background, aims, and scope  Sometimes, urban wastewaters convey a more or less significant part of toxic products from industries or the craft industry. Nitrifying activity can be affected by these substances, implying higher ammonia concentrations in the outlet effluent and contributing to toxicity for the aquatic environment. Moreover, the more stringently treated wastewater standards now require a reliable treatment for nitrogen. One of the key issues is the identification of the inhibition behavior of nitrifying bacteria facing a toxic substance. This new understanding could then finally be integrated into models in order to represent and to optimize wastewater treatment plants (WWTP) operation in cases involving ‘toxic scenarios’. Materials and methods  The toxic substances studied in this work, cadmium and 3.5-dichlorophenol (3.5-DCP), are representative of chemical substances commonly found in municipal sewage and industrial effluents and symbolize two different contaminant groups. The effects of Cd and 3.5-DCP on nitrification kinetics have been investigated using respirometry techniques. Results  IC50 values determination gives concentrations of 3.1 mg/L for 3.5-DCP and 45.8 mg/L for Cd at 21 ± 1°C. The variation to low temperature seems to have no real effect on IC50 for DCP, but induces a decrease of cadmium IC50 to 27.5 mg/L at 14°C. Finally, specific respirometric tests have been carried out in order to determine the potential effect of these toxic substances on the nitrifying decay rate b a . No significant effect has been noticed for Cd, whereas the presence of 3.5-DCP (at IC50 concentration) induced a dramatic increase of b a at 20°C. The same behavior has been confirmed by experiments performed in winter periods with a sludge temperature around 12°C. Discussion  The target substances have different modes of action on activity and mortality, notably due to the abilities of the contaminant to be precipitated, accumulated, or even to be progressively degraded. Studies realized at low temperature confirmed this assumption, and put in evidence the effect of temperature on toxic substances capable of being biosorbed. However, the change in the sludge sample characteristics can be pointed out as a problem in the investigation of the temperature effect on nitrification inhibition, as biosorption, bioaccumulation, and predation are directly linked to the sludge characteristics (VSS concentration, temperature) and the plant operating conditions (loading rates, sludge age, etc.). Conclusions  This work brings new understandings concerning the action mode of these specific contaminants on nitrifying bacteria and, in particular, on the role of temperature. The experiments lead to the determination of the IC50 values for both toxic substances on biological nitrification. The inhibition mechanisms of Cd and 3.5-DCP on nitrifying activity have been simply represented by a non-competitive inhibition model. Recommendations and perspectives  Other experiments carried out in a continuous lab-scale pilot plant should be done with a proper control of the operating conditions and of the sludge characteristics in order to better understand the mechanisms of nitrification inhibition for each contaminant. Finally, these first results show that toxic substances can have an effect on the growth rate but also on the decay rate, depending on the characteristics of the toxic substance and the sludge. This eventual double effect would imply different strategies of WWTP operation according to the behavior of the contaminant on the bacteria.  相似文献   
2.
Chu W  Rao YF 《Chemosphere》2012,86(11):1079-1086
A comprehensive study of the degradation of monuron, one of the phenylurea herbicides, was conducted by UV-Vis/WO3 process. It was found that hydroxyl radicals played a major role in the decay of monuron while other radicals (e.g. superoxide) and hole might also contribute to the decomposition of monuron. The oxidation path likely plays a major role in the generation of hydroxyl radicals. The effects of initial pH level, initial concentration of monuron, and inorganic oxidants on the performance of UV-Vis/WO3 process were also investigated and optimized. Comparison between monuron decay pathways by UV-Vis/WO3 and UV/TiO2 was conducted. The decay mechanisms, including N-terminus demethylation, dechlorination and direct hydroxylation on benzene ring, were observed to be involved in the oxidation of monuron in these two processes. Sixteen intermediates were identified during the photodegradation of monuron and degradation pathways were proposed accordingly.  相似文献   
3.
王爱珍  吴霞 《重庆环境科学》1992,14(4):21-22,29
本文利用模拟试验装置进行了氰化物在水中的降解试验研究,根据测定结果用数学计算方法求出其不同温度下的降解速度常数。从而为治理水环境提供可靠的理论依据。  相似文献   
4.
5.
Submersed macrophytes decay is an important natural process and has important role in mass and energy flow in aquatic ecosystems. However, little is known about the dynamical changes in nutrients release and bacterial community during submersed macrophyte decay in natural environment. In this study, a field observation was conducted in a wetland dominated with Hydrilla verticillata for 36 days. Increase of H2O2 and malondialdehyde (MDA) content and decrease of soluble proteins concentration were detected in leaves during H. verticillata decay. Meanwhile, ammonium-N, soluble microbial products (SMP) and TOC concentration increased in overlying water. According to bacterial 16S rRNA Illumina sequencing analysis, the Shannon values were lower in epiphytic biofilms than deciduous layer sediments. The relative abundances of Proteobacteria, Cyanobacteria and Actinobacteria were higher in epiphytic biofilms than in deciduous layer sediments (P < 0.05). Co-occurrence network analyses showed that a total of 578 and 845 pairs of correlations (|r| > 0.6) were identified from 122 and 112 genera in epiphytic biofilms and deciduous layer sediments, respectively. According to co-occurrence patterns, eight hubs were mainly from phyla Proteobacteria, Acidobacteria and Parcubacteria in epiphytic biofilms; while 37 hubs from the 14 phyla (Proteobacteria, Bacteroidetes, Acidobacteria, Chloroflexi, et al.) were detected in deciduous layer sediments. Our results indicate that bacterial community in deciduous layer sediments was more susceptible than in epiphytic biofilms during decay process. These data highlight the role of microbial community in deciduous layer sediments on nutrients removal during H. verticillata decay and will provide useful information for wetland management.  相似文献   
6.
The determination of activity concentrations of radionuclides requires a reliable gamma spectrometry system, which also depends on the compulsory attainment of secular equilibrium amongst the progenies of the radionuclide of interest. This is often difficult to attain and hence a helium particle induced x-ray emission technique, not requiring the compulsory attainment of secular equilibrium, was used to determine the actual concentrations of the elemental content of tailings from the high background radiation tin mining area, Jos, Nigeria. The activity concentrations of the radionuclides of 40K, 232Th and 238U were also calculated based on their elemental analyses, providing reliable information about the heads of uranium (238U) and thorium (232Th) series on the study area.  相似文献   
7.
国外有害废弃物的焚烧处理法   总被引:1,自引:0,他引:1  
本文介绍了国外确定有害废物可焚烧的基本原则,焚烧方法及其装置操作条件和空气污染控制系统及其排放标准等.  相似文献   
8.
Performance of a full-scale duckweed-covered treatment system in removing faecal bacteria is presented. The system consisted of three ponds in series and received septage from holding tanks. Inflow averaged between 36 m3 d−1 in the cold season and 60 m3 d−1 in the warm season, resulting in a total hydraulic retention time of 88 and 58 days, respectively. Duckweed (Lemna minor) colonized the ponds in the summer and continued to grow in the cold season. Due to the difficult harvesting process of the duckweed biomass, the investigation of the treatment efficiency was carried out without plant harvesting. The system was monitored for temperature, pH, oxygen, chlorophyll-a, Escherichia coli and Enterococci. Duckweed growth resulted in chlorophyll-a concentration reduction from 924 to 13 μg L−1, causing neutral and anoxic conditions in the pond water. A temperature effect was noticed on the E. coli decay coefficient with a decreasing trend along the treatment system. Enterococci always decayed less than E. coli. Differences on decay coefficients and removal efficiencies were not observed between the three ponds for both bacterial types. Effluent quality in terms of E. coli was 489 and 1377 cfu/100 mL, in the warm and the cold seasons, respectively, with average removals of 99.65 ± 1.46% and 99.33 ± 3.03%. Total Enterococci removal was 88.91 ± 23.1% in the warm season and 94.43 ± 24.45% in the cold season, resulting in mean effluent values of 1058 and 1404 cfu/100 mL, respectively. The seasonal differences in total removal efficiencies were insignificant for both bacterial types.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号