首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
  国内免费   7篇
综合类   5篇
基础理论   2篇
污染及防治   8篇
  2023年   1篇
  2020年   4篇
  2016年   1篇
  2015年   1篇
  2013年   2篇
  2011年   3篇
  2010年   1篇
  2007年   1篇
  2000年   1篇
排序方式: 共有15条查询结果,搜索用时 328 毫秒
1.
In the present work we compared the biological activity of DCF, 4′-OHDCF and 5-OHDCF as molecules of most biodegradation pathways of DCF and selected transformation products (2-hydroxyphenylacetic acid; 2,5-dihydroxyphenylacetic acid and 2,6-dichloroaniline) which are produced during AOPs, such as ozonation and UV/H2O2. We also examined the interaction of DCF with chlorogenic acid (CGA). CGA is commonly used in human diet and entering the environment along with waste mainly from the processing and brewing of coffee and it can be toxic for microorganisms included in activated sludge. In the present experiment the evaluation of following parameters was performed: E. coli K-12 cells viability, growth inhibition of E. coli K-12 culture, LC50 and mortality of Chironomus aprilinus, genotoxicity, sodA promoter induction and ROS generation. In addition the reactivity of E. coli SM recA:luxCDABE biosensor strain in wastewater matrices was measured. The results showed the influence of DCF, 4′-OHDCF and 5-OHDCF on E. coli K-12 cells viability and bacteria growth, comparable to AOPs by-products. The highest toxicity was observed for selected, tested AOPs by-products, in comparison to the DCF, 4′-OHDCF and 5-OHDCF. Genotoxicity assay indicated that 2,6-dichloroaniline (AOPs by-product) had the highest toxic effect. The oxidative stress assays revealed that the highest level of ROS generation and sodA promoter induction were obtained for DCF, 4′-OHDCF and 5-OHDCF, compared to other tested compounds. We have also found that there is an interaction between chlorogenic acid and DCF, which resulted in increased toxicity of the mixture of the both compounds to E. coli K-12, comparable to parent chemicals. The strongest response of E. coli SM biosensor strain with recA:luxCDABE genetic construct in filtered treated wastewaters, comparable to control sample was noticed. It indicates, that E. coli SM recA:luxCDABE biosensor strains is a good tool for bacteria monitoring in wastewater environment. Due to toxicity and biological activity of tested DCF transformation products, there is a need to use additional wastewater treatment systems for wastewater contaminated with pharmaceutical residues.  相似文献   
2.
A cocktail of human pharmaceuticals pollute aquatic environments and there is considerable scientific uncertainty about the effects that this may have on aquatic organisms. Human drug target proteins can be highly conserved in non target species suggesting that similar modes of action (MoA) may occur. The aim of this work was to explore whether molecular docking offers a potential tool to predict the effects of pharmaceutical compounds on non target organisms. Three highly prescribed drugs, diclofenac, ibuprofen and levonorgestrel which regularly pollute freshwater environments were used as examples. Their primary drug targets are cyclooxygenase 2 (COX2) and progesterone receptor (PR). Molecular docking experiments were performed using these drugs and their primary drug target homologues for Danio rerio, Salmo salar, Oncorhynchus mykiss, Xenopus tropicalis, Xenopus laevis and Daphnia pulex. The results show that fish and frog COX2 enzymes are likely to bind diclofenac and ibuprofen in the same way as humans but that D. pulex would not. Binding will probably lead to inhibition of COX function and reduced prostaglandin production. Levonorgestrel was found to bind in the same binding pocket of the progesterone receptor in frogs and fish as the human form. This suggests implications for the fecundity of fish and frogs which are exposed to levonorgestrel. Chronic ecotoxicological effects of these drugs reported in the literature support these findings. Molecular docking may provide a valuable tool for ecotoxicity tests by guiding selection of test species and incorporating the MoA of drugs for relevant chronic test end points in environmental risk assessments.  相似文献   
3.
Pharmaceuticals, including the lipid regulator gemfibrozil and the non-steroidal anti-inflammatory drug diclofenac have been identified in waste water treatment plant effluents and receiving waters throughout the western world. The acute and chronic toxicity of these compounds was assessed for three freshwater species (Daphnia magna,Pseudokirchneriella subcapitata, Lemna minor) using standardised toxicity tests with toxicity found in the non-environmentally relevant mid mg L−1 concentration range. For the acute endpoints (IC50 and EC50) gemfibrozil showed higher toxicity ranging from 29 to 59 mg L−1 (diclofenac 47-67 mg L−1), while diclofenac was more toxic for the chronic D. magna 21 d endpoints ranging from 10 to 56 mg L−1 (gemfibrozil 32-100 mg L−1). These results were compared with the expression of several biomarkers in the zebra mussel (Dreissena polymorpha) 24 and 96 h after exposure by injection to concentrations of 21 and 21,000 μg L−1 corresponding to nominal concentrations of 1 and 1000 μg L−1. Exposure to gemfibrozil and diclofenac at both concentrations significantly increased the level of lipid peroxidation, a biomarker of damage. At the elevated nominal concentration of 1000 μg L−1 the biomarkers of defence glutathione transferase and metallothionein were significantly elevated for gemfibrozil and diclofenac respectively, as was DNA damage after 96 h exposure to gemfibrozil. No evidence of endocrine disruption was observed using the alkali-labile phosphate technique. Results from this suite of biomarkers indicate these compounds can cause significant stress at environmentally relevant concentrations acting primarily through oxidation pathways with significant destabilization of the lysosomal membrane and that biomarker expression is a more sensitive endpoint than standardised toxicity tests.  相似文献   
4.
The effluents of wastewater treatment plants, usually directly emitted to the environment, often contain the anti-inflammatory drug diclofenac (DCF). The paper investigates DCF elimination using irradiation technology. Hydroxyl radical and hydrated electron reactive intermediates resulting from water radiolysis effectively degrade DCF and strongly reduce the toxicity of the solutions. OH attaches to one of the rings of DCF, and hydroxylated molecules, 2,6-dichloroaniline and quinoid type compounds are the products. Hydrated electron adds to the chlorine atom containing ring, in the reaction quinoid type compounds and 4-chloroacridine form. At a 0.1 mM DCF concentration, a ∼1 kGy absorbed dose is needed for the degradation of DCF molecules, but for mineralization of the products (in presence of O2) an order of magnitude higher dose is required.For irradiation of wastewater after biological treatment a ∼1 kGy dose is suggested. At this dose DCF and other drugs or metabolites present at μg L−1 level are eliminated together with microorganism deactivation.  相似文献   
5.
沉淀--吸附处理双氯灭痛高浓度有机废水的工艺研究   总被引:10,自引:0,他引:10  
介绍了用沉淀-吸附法处理双氯灭痛高浓度有机废水的工艺。先用废盐酸将废水的pH调节到4,沉淀、过滤,然后将滤液依次经过炉渣、生炭串级吸附,处理后的废水CODCr、pH、SS均达到GB8978-88污水综合排放制药行业二级标准。  相似文献   
6.
Aquatic contamination of diclofenac (DCF), an emergent non-steroidal anti-inflammatory drug (NSAIDs), can result in adverse effects to many ecosystems through biomagnification. Hence, introducing effective remediation techniques to sequester the pharmaceutical wastes is highly fundamental to prevent their accumulation in the environment. Generally, adsorption has been presented as a green and efficient approach. Herein, we report the characterization and application of the novel magnetic nanocomposite ([email protected]2O4) derived from cobalt-based ferrite (CoFe2O4) and graphene oxide (GO) for DCF adsorption. For the optimization procedure, the response surface methodology (RSM) was adopted to investigate the impacts of DCF concentration (1.6–18.4 mg/L), DCF dosage (0.08–0.92 g/L), and solution pH (2.6–9.4) to find the optimum conditions for DCF removal, at 10.5 mg/L, 0.74 g/L, and pH 4, respectively. For the adsorption experiments, the kinetic, isotherm, thermodynamic, and intraparticle diffusion models were systematically studied. Moreover, we have elucidated the role of functional groups on the surface of [email protected]2O4 in enhancing the adsorption of DCF drug. With good removal efficiency (up to 86.1%), high maximum adsorption capacity (32.4 mg/g), [email protected]2O4 can be a potential candidate to eliminate DCF drug from water.  相似文献   
7.
We present the structural, morphological and photocatalytic properties of stretchable composites made with carbon nanotubes (CNTs), silicon rubber and Ni@TiO2:W nanoparticles (TiWNi NPs) with average size of 37 ± 2 nm. Microscopy images showed that the TiWNi NPs decorated the surface of the CNT fibers, which are oriented in a preferential direction. TiWNi NPs presented a mixture of anatase/rutile phases with cubic structure. The performance of the TiWNi powders and stretchable composites was evaluated for the photocatalytic degradation of diclofenac (DCF) anti-inflammatory drug under ultraviolet-visible light. The results revealed that the maximum DCF degradation percentages were 34.6%, 91.9%, 97.1%, 98.5% and 100% for the CNT composite (stretched at 0%), TiWNi powders, CNT + TiWNi (stretched at 0%), CNT + TiWNi (stretched at 50%) and CNT + TiWNi (stretched at 100%), respectively. Thus, stretching the CNT + TiWNi composites was a good strategy to enhance the DCF degradation percentage from 97.1% to 100%, since stretching created additional defects (oxygen vacancies) that acted as electron sink, delaying the electron-hole recombination, and favors the DCF degradation. Raman/absorbance measurements confirmed the presence of such defects. Moreover, the reactive oxygen species (ROS) were determined by the scavenger's experiments and found that the main ROS were the ·OH and O2 radicals, which attacked the DCF molecules, causing their degradation. The results of this investigation confirmed that the stretchable CNT/TiWNi-based composites are a viable alternative to remove pharmaceutical contaminants from water and can be manually separated from the decontaminated water, which is unviable using photocatalytic powders.  相似文献   
8.
Extensive use of pharmaceuticals in human and veterinary medicine and aquaculture practices pose a serious threat to aquatic organisms. In the present investigation, Cirrhinus mrigala an Indian major carp was exposed to different concentrations of clofibric acid (CA) and diclofenac (DCF) and certain biochemical and ionoregulatory responses were assessed under short and long term exposures. During short-term (96 h) exposure period, plasma glucose and sodium (Na+) levels were increased at all concentrations (1, 10 and 100 μg L−1) of CA and DCF treated fish. Plasma protein and chloride (Cl) levels were found to be decreased at all concentrations of CA and DCF exposed fish comparatively to control groups. Meanwhile an increase in plasma potassium (K+) level was noted in fish exposed to CA treatments alone and in DCF treatments it was decreased. In long-term exposure (35 d), plasma Na+ and Cl levels were found to be significantly increased at all concentration of CA and DCF. However, a biphasic trend was observed in plasma glucose, protein and K+ levels. In both the treatments, a significant (P < 0.01 and P < 0.05) changes were observed in all parameters measured in fish exposed to different concentrations of CA and DCF. The results of the present investigation indicate that both the drugs caused significant changes in biochemical and ionoregulatory responses of fish at all concentrations. The alterations of these parameters can be useful in monitoring of pharmaceutical residues present in aquatic environment.  相似文献   
9.
根据Ensembl、Genbank登录的鱼类cat、gapdh和gst基因的CDS序列设计普通PCR扩增引物,寻找食蚊鱼的cat、gapdh和gst基因的c DNA片段,并根据定量引物设计要求设计出相应的SYBR Green I荧光定量RT-q PCR引物,建立了食蚊鱼cat、gapdh和gst基因的SYBR Green I荧光定量RT-q PCR方法。该方法在104~108数量级范围内有良好线性关系(R=0.999~1.000);熔解曲线显示扩增产物特异性良好,均为单一峰值;质粒标准品最高浓度与最低浓度的批内试验变异系数与批间试验变异系数均低于2%。利用该方法监测和评价环境污染物对水生生物的影响,选择了水体中常见典型药物污染物——双氯芬酸,研究其对食蚊鱼抗氧化基因表达的影响。结果表明,雌性食蚊鱼暴露在不同浓度双氯芬酸钠(0.005、0.05、0.5和5 mg·L-1)24 h后,其肝脏cat、gapdh和gst的mRNA呈现显著变化,相对于对照组,在低浓度0.005 mg·L-1时,cat与gst mRNA的表达量均有极显著上升(p0.01),而其它浓度均极显著下降(p0.01)。试验表明该方法具有快速、精确、灵敏度高的优点,可为利用该类小型鱼类的原位污染物的生物监测和生态毒理评价提供有力的技术支持。  相似文献   
10.
The pharmaceutical diclofenac (DCF) is released in considerably high amounts to the aquatic environment. Photo-transformation of DCF was reported as the main degradation pathway in surface waters and was found to produce metabolites with enhanced toxicity to the green algae Scenedesmus vacuolatus. We identified and subsequently confirmed 2-[2-(chlorophenyl)amino]benzaldehyde (CPAB) as a transformation product with enhanced toxicity using effect-directed analysis. The EC50 of CPAB (4.8 mg/L) was a factor of 10 lower than that for DCF (48.1 mg/L), due to the higher hydrophobicity of CPAB (log Kow = 3.62) compared with DCF (log Dow = 2.04) at pH 7.0.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号