首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  国内免费   1篇
综合类   1篇
污染及防治   2篇
  2022年   1篇
  2010年   1篇
  2003年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
Mecoprop, dichlorprop and metolachlor concentrations and enantiomer signatures were determined in Ontario streams in 2006-2007 and compared to results from 2003 to 2004. Median concentrations of dichlorprop and metolachlor were not significantly different between the two campaigns, but mecoprop was higher in 2006-2007. Concentrations of mecoprop and dichlorprop in Lake Ontario surface water were 1-2 orders of magnitude lower than stream averages. Enantiomer fractions (EFs) > 0.5 of mecoprop in high-concentration stream water samples during 2006-2007 were related to replacement of racemic mecoprop by single (+) enantiomer mecoprop-P after 2004. EFs <0.5 in low-concentration samples suggested enantioselective degradation and/or interconversion. Metolachlor profiles were expressed as SF, the fraction of herbicidally active/(active + inactive) stereoisomers. Samples with higher concentrations of metolachlor had SFs similar to S-metolachlor which is enriched in the active stereoisomers. Low concentrations were associated with lower and more variable SFs, suggesting mixed input of racemic and S-metolachlor or stereoselective degradation.  相似文献   
2.
Natural attenuation of the chiral pesticide mecoprop [2-(2-methyl-4-chlorophenoxy)propionic acid] has been studied by determining changes in its enantiomeric fraction in different redox environments down gradient of a landfill in the Lincolnshire Limestone. Previous studies have shown that mecoprop degrades predominantly aerobically and that differences in the biological behaviour of the two enantiomers will change their relative proportions during biodegradation. Originally deposited as a racemic mixture, there has been no change in the enantiomeric fraction in the most polluted part of the landfill plume where conditions are sulphate reducing/methanogenic. In the nitrate-reducing zone, the proportion of (S)-mecoprop increases, suggesting preferential degradation of (R)-mecoprop; while in the aerobic zone, the proportion of (R)-mecoprop increases, suggesting faster degradation of (S)-mecoprop. Mecoprop persistence in the confined Lincolnshire Limestone further downdip is explained by inhibition of degradation in sulphate-reducing conditions, which develop naturally. Laboratory microcosm experiments using up to 10 mg l(-1) of mecoprop confirm these inferences and show that under aerobic conditions, (S)-mecoprop and (R)-mecoprop degrade with zero-order kinetics at rates of 1.90 and 1.32 mg l(-1) day(-1), respectively. Under nitrate-reducing conditions (S)-mecoprop does not degrade, but (R)-mecoprop degrades with zero-order kinetics at 0.65 mg l(-1) day(-1) to produce a stoichiometric equivalent amount of 4-chloro-2-methylphenol. This metabolite only degrades when the (R)-mecoprop has disappeared. The addition of nitrate to a dormant iron-reducing microcosm devoid of nitrate stimulated anaerobic degradation of (R)-mecoprop after a lag period of 21 days. There was no evidence for enantiomeric inversion. The study demonstrates the sensitivity of changes in enantiomeric fraction for detecting natural attenuation, and reveals subtle differences in mecoprop degradation in different redox environments within the Lincolnshire Limestone aquifer.  相似文献   
3.
Chiral pesticides account for 30% of pesticides. Pesticides are inevitably leached into the groundwater by runoff. At the watershed level, the distribution characteristics of enantiomers in sediments collected from the river network of an agricultural area near the middle and lower reaches of the Yangtze River were tested, and their potential correlations with the physicochemical properties and microbial communities of the sediments were analyzed. The sediment pollution was serious at sites 8 and 9, with their pollution source possibly being agricultural or industrial sewage. Moreover, there were higher cumulative contents of pesticide residues at sites 4, 8, and 9. Specifically, Cycloxaprid was the most detected chiral pesticide in the study area, followed by Dinotefuran and Diclofop-methyl. Additionally, Ethiprole and Difenoconazole had strong enantioselectivity in the study area. Interestingly, the enantiomers of some chiral pesticides, such as Tebuconazole, had completely different distributions at different sites. Pearson correlation analysis showed that sediment catalase and microbial biomass carbon were important factors for enantioselectivity of chiral pesticides. The effect of sediment physicochemical properties on enantioselective distribution was achieved by influencing the microorganisms in the sediment. Furthermore, the enantioselective distribution of Tebuconazole was closely related to the genus Arenimonas. Overall, the enantioselective distribution of most of the chiral pesticides was positively correlated with the prokaryotic microbial community. This study provides empirical support for agricultural non-point source pollution caused by chiral pesticides, and also lays a research foundation for exploring the factors that affect the fate of chiral pesticides in the environment.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号