首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   118篇
  免费   0篇
  国内免费   2篇
环保管理   2篇
综合类   14篇
基础理论   104篇
  2017年   1篇
  2015年   1篇
  2011年   2篇
  2010年   1篇
  2009年   12篇
  2008年   13篇
  2007年   18篇
  2006年   6篇
  2005年   12篇
  2004年   6篇
  2003年   2篇
  2002年   2篇
  2001年   3篇
  2000年   2篇
  1999年   6篇
  1998年   8篇
  1997年   3篇
  1996年   4篇
  1995年   6篇
  1994年   8篇
  1993年   2篇
  1992年   2篇
排序方式: 共有120条查询结果,搜索用时 343 毫秒
1.
Many birds and mammals store energy as hoarded food supplies. A supply of stored food is beneficial during periods when food is scarce, but building up and managing such a supply also entails costs. The optimal number of caches will be reached when the net benefit is at its maximum. If dominants can steal more stored food from subordinates than the other way around, the optimum will differ between these categories. A previous theoretical model of hoarding in groups with dominant and subordinate members produced three testable predictions: (1) hoarders should store more food as anticipated future conditions get worse; (2) subordinate flock members should store more food than dominants; and (3) dominants should increase hoarding relatively more than subordinates as conditions get worse. Here we present a field experiment on willow tits (Parus montanus) designed to test these predictions. We found support for all three. Hoarding increased as conditions got worse, subordinates stored at a higher rate than dominants, and dominants increased their hoarding effort relatively more than subordinates as conditions worsened. These results support the incorporation of information on dominance and food availability into models predicting food storage behaviour.Communciated by J. Dickinson  相似文献   
2.
Individuals which deviate from the majority in groups are likely to be most vulnerable to predation. This oddity effect, by definition, is frequency dependent, eventually fading at equal frequencies of the phenotypes in a group. It has been hypothesized that the increased predation risk of odd individuals may play an important role in the formation of phenotypically uniform shoals of fish. However, recent work has indicated that individuals may experience, or value, their predation hazard differently depending on their own size in relation to that of other group members: single large fish, but not small ones, appear concerned about their oddity in a shoal. Here I show that the apparent wariness of large fish is also expressed in a frequency-dependent manner, closely conforming to what is predicted if the oddity effect is responsible for their behavior. Using foraging activity of individuals as a means to evaluate their predation risk, I demonstrate with shoals comprising 12 threespine sticklebacks (Gasterosteus aculeatus) that large fish forage least actively when in a shoal consisting of 2 large and 10 small fish. An increase in the number of large fish to 4 among 8 small individuals clearly results in an increase in their foraging activity. However, having reached an equal frequency with small fish in a shoal, large fish do not seem to change their foraging activity much even when their number in a shoal increases further. In contrast, foraging activity of small sticklebacks remains fairly constant throughout the entire range of tested shoal compositions, providing further evidence that small and large fish respond to their oddity differently. Received: 12 February 1998 / Accepted after revision: 7 May 1998  相似文献   
3.
Dominance interactions affected patterns of non-reproductive division of labor (polyethism) in the eusocial wasp Mischocyttarus mastigophorus. Socially dominant individuals foraged for food (nectar and insect prey) at lower rates than subordinate individuals. In contrast, dominant wasps performed most of the foraging for the wood pulp used in nest construction. Social dominance also affected partitioning of materials collected by foragers when they returned to the nest. Wood pulp loads were never shared with nest mates, while food loads, especially insect prey, were often partitioned with other wasps. Dominant individuals on the nest were more likely to take food from arriving foragers than subordinate individuals. The role of dominance interactions in regulating polyethism has evolved in the eusocial paper wasps (Polistinae). Both specialization by foragers and task partitioning have increased from basal genera (independent-founding wasps, including Mischo-cyttarus spp.) to more derived genera (swarm-founding Epiponini). Dominance interactions do not regulate forager specialization or task partitioning in epiponines. I hypothesize that these changes in polyethism were enabled by the evolution of increased colony size in the Epiponini. Received: 8 December 1997 / Accepted after revision: 28 March 1998  相似文献   
4.
Dancing and trophallactic behaviour of forager honey bees, Apis mellifera ligustica >Spinola, that returned from an automatic feeder with a regulated flow rate of 50% weight-to-weight sucrose solution (range: 0.76–7.65 μl/min) were studied in an observation hive. Behavioural parameters of dancing, such as probability, duration and dance tempo, increased with the nectar flow rate, though with very different response curves among bees. For trophallaxis (i.e. mouth-to-mouth exchange of food), the frequency of giving-contacts and the transfer rate of the nectar increased with the nectar flow rate. After unloading, foragers often approached other nest mates and begged for food before returning to the food source. This behaviour was less frequent at higher nectar flow rates. These results show that the profitability of a food source in terms of nectar flow rate had a quantitative representation in the hive through quantitative changes in trophallactic and dancing behaviour. The role of trophallaxis as a communication channel during recruitment is discussed. Received: 14 January 1995/Accepted after revision: 14 August 1995  相似文献   
5.
To detect threats and reduce predation risk prey animals need to be alert. Early predator detection and rapid anti-predatory action increase the likelihood of survival. We investigated how foraging affects predator detection and time to take-off in blue tits (Parus caeruleus) by subjecting them to a simulated raptor attack. To investigate the impact of body posture we compared birds feeding head-down with birds feeding head-up, but could not find any effect of posture on either time to detection or time to take-off. To investigate the impact of orientation we compared birds having their side towards the attacking predator with birds having their back towards it. Predator detection, but not time to take-off, was delayed when the back was oriented towards the predator. We also investigated the impact of foraging task by comparing birds that were either not foraging, foraging on chopped mealworms, or foraging on whole ones. Foraging on chopped mealworms did not delay detection compared to nonforaging showing that foraging does not always restrict vigilance. However, detection was delayed more than 150% when the birds were foraging on whole, live mealworms, which apparently demanded much attention and handling skill. Time to take-off was affected by foraging task in the same way as detection was. We show that when studying foraging and vigilance one must include the difficulty of the foraging task and prey orientation.Communicated by P.A. Bednekoff  相似文献   
6.
Energy intake and expenditure on natural foraging trips were estimated for the seed-harvester ants, Pogonomyrmex maricopa and P. rugosus. During seed collection, P. maricopa foraged individually, whereas P. rugosus employed a trunk-trail foraging system. Energy gain per trip and per minute were not significantly different between species. There was also no interspecific difference in energy cost per trip, but energy cost per minute was lower for P. maricopa foragers because they spent on average 7 min longer searching for a load on each trip. Including both unsuccessful and successful foraging trips, average energy gain per trip was more than 100 times the energy cost per trip for both species. Based on this result, we suggest that time cost incurred during individual foraging trips is much more important than energy cost in terms of maximizing net resource intake over time. In addition, because energy costs are so small relative to gains, we propose that energy costs associated with foraging may be safely ignored in future tests of foraging theory with seed-harvesting ant species.  相似文献   
7.
Several sexual selection theories assume certain benefits of female mate preference. The direct benefit, i.e., the direct contribution from males to their offspring and females, has been well tested empirically. However, the indirect benefit, i.e., the male's genetic contribution to their offspring, has been poorly demonstrated. Female preference for males' carotenoid-based coloration is known in some animals. Since animals must acquire carotenoids through foods, it is often hypothesized that the brightness of the carotenoid-based coloration is a reliable indicator of the male's foraging ability. Hence, females' indirect benefits, such as greater foraging ability in their offspring, through mate preference for the carotenoid-based coloration are assumed. However, the heritability of the foraging ability for foods that serve as carotenoid resources has not been tested. In this study, a maze experiment was performed in guppies (Poecilia reticulata) to examine the heritability of the foraging ability for algae, carotenoid resources in nature. The latency for completing algal-foraging tasks in this experiment showed high individual variation. Heritable estimates of the foraging ability were substantial (h 2 = 0.57 – 0.66) and significant, suggesting a genetic contribution to the foraging ability from fathers to their offspring. This result may support the hypothesis that indirect benefits influence the evolution of female choice.  相似文献   
8.
9.
Scale invariant patterns have been found in different biological systems, in many cases resembling what physicists have found in other, nonbiological systems. Here we describe the foraging patterns of free-ranging spider monkeys (Ateles geoffroyi) in the forest of the Yucatan Peninsula, Mexico and find that these patterns closely resemble what physicists know as Lévy walks. First, the length of a trajectorys constituent steps, or continuous moves in the same direction, is best described by a power-law distribution in which the frequency of ever larger steps decreases as a negative power function of their length. The rate of this decrease is very close to that predicted by a previous analytical Lévy walk model to be an optimal strategy to search for scarce resources distributed at random. Second, the frequency distribution of the duration of stops or waiting times also approximates to a power-law function. Finally, the mean square displacement during the monkeys first foraging trip increases more rapidly than would be expected from a random walk with constant step length, but within the range predicted for Lévy walks. In view of these results, we analyze the different exponents characterizing the trajectories described by females and males, and by monkeys on their own and when part of a subgroup. We discuss the origin of these patterns and their implications for the foraging ecology of spider monkeys.Communicated by D. Watts  相似文献   
10.
Bats produce echolocation signals that reflect the sensory tasks they perform. In open air or over water, bats encounter few or no background echoes (clutter). Echolocation of such bats is the primary cue for prey perception and varies with the stage of approach to prey, typically comprising search, approach, and terminal group calls. In contrast, bats that glean stationary food from rough surfaces emit more uniform calls without a distinct terminal group. They use echolocation primarily for orientation in space and mostly need additional sensory cues for finding food because clutter echoes overlap strongly with food echoes. Macrophyllum macrophyllum is the only Neotropical leaf-nosed bat (Phyllostomidae) that hunts in clutter-poor habitat over water. As such, we hypothesized that, unlike all other members of its family, but similar to other trawling and aerial insectivorous bats, M. macrophyllum can hunt successfully by using only echolocation for prey perception. In controlled behavioral experiments on Barro Colorado Island, Panamá, we confirmed that echolocation alone is sufficient for finding prey in M. macrophyllum. Furthermore, we showed that pattern and structure of echolocation signals in M. macrophyllum are more similar to aerial and other trawling insectivorous bats than to close phylogenetic relatives. Particularly unique among phyllostomid bats, we found distinct search, approach, and terminal group calls in foraging M. macrophyllum. Call structure, however, consisting of short, multiharmonic, and steep frequency-modulated signals, closely resembled those of other phyllostomid bats. Thus, echolocation behavior in M. macrophyllum is shaped by ecological niche as well as by phylogeny.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号