首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   754篇
  免费   27篇
  国内免费   15篇
安全科学   39篇
废物处理   3篇
环保管理   211篇
综合类   99篇
基础理论   289篇
污染及防治   76篇
评价与监测   31篇
社会与环境   32篇
灾害及防治   16篇
  2024年   2篇
  2023年   7篇
  2022年   13篇
  2021年   18篇
  2020年   11篇
  2019年   10篇
  2018年   10篇
  2017年   23篇
  2016年   24篇
  2015年   10篇
  2014年   20篇
  2013年   31篇
  2012年   19篇
  2011年   60篇
  2010年   40篇
  2009年   85篇
  2008年   62篇
  2007年   51篇
  2006年   45篇
  2005年   36篇
  2004年   28篇
  2003年   23篇
  2002年   18篇
  2001年   9篇
  2000年   18篇
  1999年   22篇
  1998年   7篇
  1997年   7篇
  1996年   22篇
  1995年   6篇
  1994年   8篇
  1993年   13篇
  1992年   5篇
  1991年   3篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1987年   3篇
  1986年   2篇
  1985年   4篇
  1984年   2篇
  1983年   2篇
  1982年   2篇
  1980年   5篇
  1979年   2篇
  1978年   2篇
  1968年   1篇
排序方式: 共有796条查询结果,搜索用时 15 毫秒
1.
Ecologically relevant traits of organisms in an assemblage determine an ecosystem's functional fingerprint (i.e., the shape, size, and position of multidimensional trait space). Quantifying changes in functional fingerprints can therefore provide information about the effects of diversity loss or gain through time on ecosystem condition and is a promising approach to monitoring ecological integrity. This, however, is seldom possible owing to limitations in historical surveys and a lack of data on organismal traits, particularly in diverse tropical regions. Using data from detailed bird surveys from 4 periods across more than a century, and morphological and ecological traits of 233 species, we quantified changes in the avian functional fingerprint of a tropical montane forest in the Andes of Colombia. We found that 78% of the variation in functional space, regardless of period, was described by 3 major axes summarizing body size, dispersal ability (indexed by wing shape), and habitat breadth. Changes in species composition significantly altered the functional fingerprint of the assemblage and functional richness and dispersion decreased 35–60%. Owing to species extirpations and to novel additions to the assemblage, functional space decreased over time, but at least 11% of its volume in the 2010s extended to areas of functional space that were unoccupied in the 1910s. The assemblage now includes fewer large-sized species, more species with greater dispersal ability, and fewer habitat specialists. Extirpated species had high functional uniqueness and distinctiveness, resulting in large reductions in functional richness and dispersion after their loss, which implies important consequences for ecosystem integrity. Conservation efforts aimed at maintaining ecosystem function must move beyond seeking to sustain species numbers to designing complementary strategies for the maintenance of ecological function by identifying and conserving species with traits conferring high vulnerability such as large body size, poor dispersal ability, and greater habitat specialization. Article impact statement: Changes in functional fingerprints provide a means to quantify the integrity of ecological assemblages affected by diversity loss or gain.  相似文献   
2.
The alpine musk deer (Moschus chrysogaster) is a key species of some terrestrial ecosystems, it has an important economic and conservative significance as a kind of medical animal in China. Due to the interaction between natural forces and human disturbance, the habitats of alpine musk deer are fragmented and isolated in different mountains and the populations are confronted with many problems of survival. In this paper, we discuss the impact of habitat fragmentation and isolation on alpine musk deer populations based on the investigation on the population densities and sizes and environmental factors in different reserves, as well as on the analysis of its ecological adaptability. We found that the alpine musk deer has strong ecological adaptability; the population development of alpine musk deer may benefit from the reduction of the forest area and even from the fragmentation and isolation of the habitat to a certain extent. However, deforestion should not be encouraged only for the alpine musk deer population, but should also be based on the overall consideration of biodiversity conservation.  相似文献   
3.
The increasing use of the landscape by humans has led to important diminutions of natural surfaces. The remaining patches of wild habitat are small and isolated from each other among a matrix of inhospitable land-uses. This habitat fragmentation, by disabling population movements and stopping their spread to new habitats, is a major threat to the survival of numerous plant and animal species. We developed a general model, adaptable for specific species, capable of identifying suitable habitat patches within fragmented landscapes and investigating the capacity of populations to move between these patches. This approach combines GIS analysis of a landscape, with spatial dynamic modeling. Suitable habitat is identified using a threshold area to perimeter ratio. Potential movement pathways of species between habitat patches are modeled using a cellular automaton. Habitat connectivity is estimated by overlaying habitat patches with movement pathways. The maximum potential population is calculated within and between connected habitat patches and potential risk of inbreeding within meta-populations is considered. The model was tested on a sample map and applied to scenario maps of predicted land-use change in the Peoria Tri-county region (IL). It (1) showed area of natural area alone was insufficient to estimate the consequences on animal populations; (2) underscored the necessity to use approaches investigating the effect of land-use change spatially through the landscape and the importance of considering species-specific life history characteristics; and (3) highlighted the model's potential utility as an indicator of species likelihood to be affected negatively by land-use scenarios and therefore requiring detailed investigation.  相似文献   
4.
This paper describes four global-change phenomena that are having major impacts on Amazonian forests. The first is accelerating deforestation and logging. Despite recent government initiatives to slow forest loss, deforestation rates in Brazilian Amazonia have increased from 1.1 million ha yr–1 in the early 1990s, to nearly 1.5 million ha yr–1 from 1992–1994, and to more than 1.9 million ha yr–1 from 1995–1998. Deforestation is also occurring rapidly in some other parts of the Amazon Basin, such as in Bolivia and Ecuador, while industrialized logging is increasing dramatically in the Guianas and central Amazonia.The second phenomenon is that patterns of forest loss and fragmentation are rapidly changing. In recent decades, large-scale deforestation has mainly occurred in the southern and eastern portions of the Amazon — in the Brazilian states of Pará, Maranho, Rondônia, Acre, and Mato Grosso, and in northern Bolivia. While rates of forest loss remain very high in these areas, the development of major new highways is providing direct conduits into the heart of the Amazon. If future trends follow past patterns, land-hungry settlers and loggers may largely bisect the forests of the Amazon Basin.The third phenomenon is that climatic variability is interacting with human land uses, creating additional impacts on forest ecosystems. The 1997/98 El Niño drought, for example, led to a major increase in forest burning, with wildfires raging out of control in the northern Amazonian state of Roraima and other locations. Logging operations, which create labyrinths of roads and tracks in forsts, are increasing fuel loads, desiccation and ignition sources in forest interiors. Forest fragmentation also increases fire susceptibility by creating dry, fire-prone forest edges.Finally, recent evidence suggests that intact Amazonian forests are a globally significant carbon sink, quite possibly caused by higher forest growth rates in response to increasing atmospheric CO2 fertilization. Evidence for a carbon sink comes from long-term forest mensuration plots, from whole-forest studies of carbon flux and from investigations of atmospheric CO2 and oxygen isotopes. Unfortunately, intact Amazonian forests are rapidly diminishing. Hence, not only is the destruction of these forests a major source of greenhouse gases, but it is reducing their intrinsic capacity to help buffer the rapid anthropogenic rise in CO2.  相似文献   
5.
Mitigation and adaptation synergy in forest sector   总被引:1,自引:1,他引:1  
Mitigation and adaptation are the two main strategies to address climate change. Mitigation and adaptation have been considered separately in the global negotiations as well as literature. There is a realization on the need to explore and promote synergy between mitigation and adaptation while addressing climate change. In this paper, an attempt is made to explore the synergy between mitigation and adaptation by considering forest sector, which on the one hand is projected to be adversely impacted under the projected climate change scenarios and on the other provide opportunities to mitigate climate change. Thus, the potential and need for incorporating adaptation strategies and practices in mitigation projects is presented with a few examples. Firstly, there is a need to ensure that mitigation programs or projects do not increase the vulnerability of forest ecosystems and plantations. Secondly, several adaptation practices could be incorporated into mitigation projects to reduce vulnerability. Further, many of the mitigation projects indeed reduce vulnerability and promote adaptation, for example; forest and biodiversity conservation, protected area management and sustainable forestry. Also, many adaptation options such as urban forestry, soil and water conservation and drought resistant varieties also contribute to mitigation of climate change. Thus, there is need for research and field demonstration of synergy between mitigation and adaptation, so that the cost of addressing climate change impacts can be reduced and co-benefits increased.  相似文献   
6.
The paper gives an overview of approaches towards ecological networks throughout Europe.It does not intend to present a complete picture,but to highlight comon developments within countries and regions and show common principles and differences between countries and regions that have to be taken into account when developing a joint European intiative,Countries or regions that have not been included can be active in the same way ,but information was not accessible to be authors for different reasons.This overview shows the comparable trends in decline of landscapes and the diversity in approaches to biodiversity conservation and nature conservation planning.Understanding the differences and common issues are of utmost imprtance to generalise common principles and to understand the way neighbours and other European partners approach problems.  相似文献   
7.
古尔班通古特沙漠1970-2000年代生物结皮覆盖变化研究   总被引:2,自引:0,他引:2  
生物结皮是古尔班通古特沙漠主要的地表覆盖类型,也是维持其地表稳定的重要生物因子。论文利用20世纪70年代中期、80年代末期及21世纪初的遥感影像,通过生物结皮指数提取了古尔班通古特沙漠在相应时期内的生物结皮空间分布。在此基础上,分析了研究区近30年来生物结皮空间分布的变化特征;利用景观分析软件Fragstats计算了各个时期内结皮覆盖的景观指数熏并对其变化特征进行了分析。结果表明:由于新疆气候增湿、增暖明显,近30年来结皮发育良好。但由于油田开采、水利工程建设、牲畜放牧等人类活动的加强,结皮发育受到较为严重的干扰,区域内结皮斑块破碎化程度加大。  相似文献   
8.
旅游踩踏对土壤微生物生物量碳、氮、磷的影响   总被引:10,自引:0,他引:10  
为了探明旅游活动对张家界国家森林公园土壤微生物活性及多样性的影响,保护土壤生态平衡及合理开发自然保护区提供理论依据,进行了旅游踩踏对土壤微生物生物量碳、氮、磷的影响研究.结果表明,在所设的3个试验区中,0~5cm土壤层的微生物生物量碳、磷受到旅游踩踏的影响最严重,5~15cm土壤层的微生物生物量碳、磷受到旅游踩踏的影响较严重,而15~25cm土壤层的微生物生物量碳、磷受到旅游踩踏的影响最轻,旅游踩踏对所设3个试验区中3个层次土壤的微生物生物量碳、磷的影响均达到了显著水平(p<0.05).从旅游踩踏对3个土壤层的微生物生物量氮的影响程度来看,0~5cm土壤层的微生物生物量氮受到的影响最严重,5~15cm土壤层的微生物生物量氮受到的影响较严重,而15~25cm土壤层的微生物生物量氮受到的影响最轻,背景区与缓冲区15~25cm土壤层的微生物生物量氮差异没有达到显著水平.说明张家界国家森林公园土壤微生物遭到了旅游踩踏的破坏,抵御外界干扰的能力已受到了旅游踩踏的破坏.  相似文献   
9.
本文讨论了森林经营方案实施的反馈控制模式,提出了森林经营方案实施的反馈控制模型,这经营方案实施策略的最优调整提供了科学的方法。  相似文献   
10.
兴文石林是喀斯特岩溶地质风景名胜区兴文石海的中心景区,喀斯特岩溶山地的生态环境具有一定脆弱特性,随着旅游业的不断发展,景区加大了开发力度,可能导致景区脆弱性的加剧,为了保证在旅游开发中能对景区重要的地质资源进行更好地保护,采用生态脆弱区评级指标及权重值评分法对兴文石林的10个主景点进行了研究,分析得出,兴文石林存在轻生态脆弱性、中生态脆弱性和强生态脆弱性三种梯度趋向,其中,脆弱性最强区域面积达到2平方公里的面积,这些区域分布在景区的边缘地带,因此,要实现旅游资源的可持续利用,必须对强生态脆弱性区域实行禁游和实行退耕还林等措施,以防止脆弱区域的扩大和脆弱性加剧.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号