首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   0篇
  国内免费   1篇
综合类   1篇
  2018年   1篇
排序方式: 共有1条查询结果,搜索用时 31 毫秒
1
1.
Arbuscular mycorrhizal fungi(AMF) are important during revegetation of mining sites, but few studies compared AMF community in revegetated sites with pristine adjacent ecosystems. The aim of this study was to assess AMF species richness in a revegetated iron-mining site and adjacent ecosystems and to relate AMF occurrence to soil chemical parameters. Soil samples were collected in dry and rainy seasons in a revegetated iron-mining site(RA) and compared with pristine ecosystems of forest(FL), canga(NG),and Cerrado(CE). AMF species were identified by spore morphology from field and trap cultures and by LSU r DNA sequencing using Illumina. A total of 62 AMF species were recovered, pertaining to 18 genera and nine families of Glomeromycota. The largest number of species and families were detected in RA, and Acaulospora mellea and Glomus sp1 were the most frequent species. Species belonging to Glomeraceae and Acaulosporaceae accounted for 42%–48% of total species richness. Total number of spores and mycorrhizal inoculum potential tended to be higher in the dry than in the rainy season, except in RA. Sequences of uncultured Glomerales were dominant in all sites and seasons and five species were detected exclusively by DNA-based identification. Redundancy analysis evidenced soil p H,organic matter, aluminum, and iron as main factors influencing AMF presence. In conclusion, revegetation of the iron-mining site seems to be effective in maintaining a diverse AMF community and different approaches are complementary to reveal AMF species, despite the larger number of species being identified by traditional identification of field spores.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号