首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
综合类   1篇
基础理论   12篇
污染及防治   1篇
  2013年   1篇
  2010年   1篇
  2008年   1篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
  2004年   2篇
  2003年   1篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1994年   1篇
排序方式: 共有14条查询结果,搜索用时 31 毫秒
1.
Information about food sources can be crucial to the success of a foraging animal. We predict that this will influence foraging decisions by group-living foragers, which may sacrifice short-term foraging efficiency to collect information more frequently. This result emerges from a model of a central-place forager that can potentially receive information on newly available superior food sources at the central place. Such foragers are expected to return early from food sources, even with just partial loads, if information about the presence of sufficiently valuable food sources is likely to become available. Returning with an incomplete load implies that the forager is at that point not achieving the maximum possible food delivery rate. However, such partial loading can be more than compensated for by an earlier exploitation of a superior food source. Our model does not assume cooperative foraging and could thus be used to investigate this effect for any social central-place forager. We illustrate the approach using numerical calculations for honeybees and leafcutter ants, which do forage cooperatively. For these examples, however, our results indicate that reducing load confers minimal benefits in terms of receiving information. Moreover, the hypothesis that foragers reduce load to give information more quickly (rather than to receive it) fits empirical data from social insects better. Thus, we can conclude that in these two cases of social-insect foraging, efficient distribution of information by successful foragers may be more important than efficient collection of information by unsuccessful ones.  相似文献   
2.
We studied the extent to which worker honey bees acquire information from waggle dances throughout their careers as foragers. Small groups of foragers were monitored from time of orientation flights to time of death and all in-hive behaviors relating to foraging were recorded. In the context of a novice forager finding her first food source, 60% of the bees relied, at least in part, on acquiring information from waggle dances (being recruited) rather than searching independently (scouting). In the context of an experienced forager whose foraging has been interrupted, 37% of the time the bees resumed foraging by following waggle dances (being reactivated) rather than examining the food source on their own (inspecting). And in the context of an experienced forager engaged in foraging, 17% of the time the bees initiated a foraging trip by following a waggle dance. Such dance following was observed much more often after an unsuccessful than after a successful foraging trip. Successful foragers often followed dances just briefly, perhaps to confirm that the kind of flowers they had been visiting were still yielding forage. Overall, waggle dance following for food discovery accounted for 12–25% of all interactions with dancers (9% by novice foragers and 3–16% by experienced foragers) whereas dance following for reactivation and confirmation accounted for the other 75–88% (26% for reactivation and 49–62% for confirmation). We conclude that foragers make extensive use of the waggle dance not only to start work at new, unfamiliar food sources but also to resume work at old, familiar food sources.  相似文献   
3.
The fitness of a social insect colony depends greatly on the quality (i.e., mating ability, fecundity, and offspring viability) of its queen(s). In honeybees, there is marked variation in the quality of young queens that compete in a series of lethal duels to replace a colonys previous queen. Workers interact with queens during these duels and could increase their inclusive fitness by biasing the outcomes of the duels in favor of high-quality queens. We predicted that workers will have more antagonistic interactions (chasing, grabbing, clamping) and fewer beneficent interactions (feeding, grooming) with low-quality than high-quality queens. To test this prediction, we reared queens from 0-day-old, 2-day-old, and 3-day-old worker larvae in observation colonies undergoing queen replacement, thus producing high-quality, low-quality, and very low-quality queens, respectively. Immediately after each queen emerged, we observed her for 1 h to record her interactions with the workers. Subsequent morphological measurement of the queens confirmed that initial larval age had a significant effect on queen quality. However, there was no consistent effect of queen quality on the rates of worker–queen interactions, thus falsifying our hypothesis. The mean power of our tests was high (0.599), therefore the probability of a type II error (a false negative) is low. We conclude that if workers actively select high-quality queens, then they do so prior to queen duels, during queen development. We suggest that each worker–queen interaction has a distinct adaptive significance rather than forming a suite of behavior that favors particular queens (e.g., chasing repels any queen that approaches a queen cell, thus protecting all queen cells from destruction).Communicated by M. Giurfa  相似文献   
4.
In honeybees, as in other highly eusocial species, tasks are performed by individual workers, but selection for worker task phenotypes occurs at the colony level. We investigated the effect of colony-level selection for pollen storage levels on the foraging behavior of individual honeybee foragers to determine (1) the relationship between genotype and phenotypic expression of foraging traits at the individual level and (2) how genetically based variation in worker task phenotype is integrated into colony task organization. We placed workers from lines selected at the colony level for high or low pollen stores together with hybrid workers into a common hive environment with controlled access to resources. Workers from the selected lines showed reciprocal variation in pollen and nectar collection. High-pollen-line foragers collected pollen preferentially, and low- pollen-line workers collected nectar, indicating that the two tasks covary genetically. Hybrid workers were not intermediate in phenotype, but instead showed directional dominance for nectar collection. We monitored the responses of workers from the selected strains to changes in internal (colony) and external (resource) stimulus levels for pollen foraging to measure the interaction between genotypic variation in foraging behavior and stimulus environment. Under low-stimulus conditions, the foraging group was over-represented by high-pollen-line workers. However, the evenness in distribution of the focal genetic groups increased as foraging stimuli increased. These data are consistent with a model where task choice is a consequence of genetically based response thresholds, and where genotypic diversity allows colony flexibility by providing a range of stimulus thresholds. Received: 3 May 1999 / Received in revised form: 22 December 1999 / Accepted: 23 January 2000  相似文献   
5.
One of the mechanisms by which honeybees regulate division of labour among their colony members is age polyethism. Here the younger bees perform in-hive tasks such as heating and the older ones carry out tasks outside the hive such as foraging. Recently it has been shown that the higher developmental temperatures of the brood, which occur in the centre of the brood nest, reduce the age at which individuals start to forage once they are adult. It is unknown whether this effect has an impact on the survival of the colony. The aim of this paper is to study the consequences of the temperature gradient on the colony survival in a model on the basis of empirical data.We created a deterministic simulation of a honeybee colony (Apis mellifera) which we tuned to our empirical data. In the model in-hive bees regulate the temperature of the brood nest by their heating activities. These temperatures determine the age of first foraging in the newly emerging bees and thus the number of in-hive bees present in the colony. The results of the model show that variation in the onset of foraging due to the different developmental temperatures has little impact on the population dynamics and on the absolute number of bees heating the nest unless we increase this effect by several times to unrealistic values, where individuals start foraging up to 10 days earlier or later. Rather than on variation in the onset of foraging due to the temperature gradient it appears that the survival of the colony depends on a minimal number of bees available for heating at the beginning of the simulation.  相似文献   
6.
Recent studies showed that nectar odors brought back by honeybee foragers can be learned associatively inside the hive. In the present study, we focused on the learning abilities of bees, which directly interact via trophallaxis with the incoming nectar foragers: the workers that perform nectar-receiving tasks inside the hive. Workers that have received food directly from foragers coming back from a feeder offering either unscented or scented sugar solution [phenylacetaldehyde (PHE) or nonanal diluted] were captured from two observational hives, and their olfactory memories were tested using the proboscis extension response paradigm. Bees that have received scented solution from incoming foragers showed significantly increased response frequencies for the corresponding solution odor in comparison with those that have received unscented solution. No differences in the response frequencies were found between food odors and colonies. The results indicate that first-order receivers learn via trophallaxis the association between the scent and the sugar solution transferred by incoming foragers. The implications of these results should be considered at three levels: the operational cohesion of bees involved in foraging-related tasks, the information propagation inside the hive related to the floral type exploited, and the putative effect of these memories on future preferences for resources.  相似文献   
7.
Infectious processes in a social group are driven by a network of contacts that is generally structured by the organization arising from behavioral and spatial heterogeneities within the group. Although theoretical models of transmission dynamics have placed an overwhelming emphasis on the importance of understanding the network structure in a social group, empirical data regarding such contact structures are rare. In this paper, I analyze the network structure and the correlated transmission dynamics within a honeybee colony as determined by food transfer interactions and the changes produced in it by an experimental manipulation. The study demonstrates that widespread transmission in the colony is correlated to a lower clustering coefficient and higher robustness of the social network. I also show that the social network in the colony is determined by the spatial distribution of various age classes, and the resulting organizational structure provides some amount of immunity to the young individuals. The results of this study demonstrates how, using the honeybee colony as a model system, concepts in network theory can be combined with those in behavioral ecology to gain a better understanding of social transmission processes, especially those related to disease dynamics.  相似文献   
8.
A honeybee colony needs to divide its workforce so that each of the many tasks it performs has an appropriate number of workers assigned to it. This task allocation system needs to be flexible enough to allow the colony to quickly adapt to an ever-changing environment. In this study, we examined possible mechanisms by which a honeybee colony regulates the division of labor between scouts (foragers that search for new food sources without having been guided to them) and recruits (foragers that were guided via recruitment dances toward food sources). Specifically, we examined the roles that the availability of recruitment dances and worker genotype has in the colony-level regulation of the number of workers engaged in scouting. Our approach was threefold. We first developed a mathematical model to demonstrate that the decision to become a scout or a recruit could be regulated by whether a potential forager can find a recruitment dance within a certain time period. We then tested this model by investigating the effect of dance availability on the regulation of scouts in the field. Lastly, we investigated if the probability of being a scout has a genetic basis. Our field data supported the hypothesis that scouts are those foragers that have failed to locate a recruitment dance as predicted by our model, but we found no effect of genotype on the propensity of foragers to become scouts.  相似文献   
9.
With very rare exceptions, queenright worker honeybees (Apis mellifera L.) forego personal reproduction and suppress reproduction by other workers, preferring to rear the queens sons. This is in stark contrast to colonies that have lost their queen and have failed to rear a replacement. Under these conditions workers activate their ovaries and lay many eggs that develop parthenogenetically into a final brood of males (drones) before the colony perishes. Interestingly, not all workers contribute equally to this final generation of drones in queenless colonies. Some subfamilies (workers that share the same father) contribute a disproportionately greater number of offspring than other subfamilies. Here we explore some of the mechanisms behind this reproductive competition among subfamilies. We determined the relative contribution of different subfamilies present in colonies to laying workers, eggs, larvae and pupae by genotyping samples of all life stages using a total of eight microsatellite loci. Our colonies were headed by free-mated queens and comprised 8–17 subfamilies and therefore differed significantly from colonies used in an earlier study investigating the same phenomena where colonies comprised an artificially low number of subfamilies. We show that, first, subfamilies vary in the speed with which they activate their ovaries after queen-loss and, second, that the survival of eggs to the larval stage is unequal among subfamilies suggesting that some subfamilies lay eggs that are more acceptable than others. However, there is no statistically significant difference among subfamilies in the survival of larvae to pupae, indicating that ovary activation and egg survival are the critical components to reproductive competition among subfamilies of queenless honeybee workers.Communicated by R. Page  相似文献   
10.
Colonies and isolated bees of the Cape honeybee, Apis mellifera capensis Esch., were observed for evidence of circadian rhythmicity under constant conditions. It was found that colonies develop free-running activity rhythms in self-selected light-dark cycles, which are slightly shorter than 24 h. The periods of the activity rhythms of individual isolated bees were longer than 24 h in self-selected light-dark and constant light, while they were shorter than 24 h in constant darkness. A greater variability in period was found in the isolated bees than in the colonies. When the rhythms of colonies and individual bees from these colonies were measured simultaneously, the activities of the isolated bees drifted with respect to that of the colonies, their period being either longer or shorter than that of their own colony. After 12 days of isolation of individual bees from their colony, all coincidence between the phases of the two rhythms was lost. We conclude that the periods of common activity and common rest of the bees within a colony result from a mutual (social) synchronization of the rhythms of the individual bees.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号