首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   89篇
  免费   2篇
  国内免费   13篇
安全科学   19篇
废物处理   4篇
环保管理   5篇
综合类   40篇
基础理论   8篇
污染及防治   26篇
评价与监测   2篇
  2023年   3篇
  2022年   1篇
  2021年   1篇
  2020年   5篇
  2019年   4篇
  2017年   4篇
  2016年   3篇
  2015年   9篇
  2014年   4篇
  2013年   4篇
  2012年   3篇
  2011年   8篇
  2010年   1篇
  2009年   6篇
  2008年   5篇
  2007年   5篇
  2006年   4篇
  2005年   2篇
  2004年   3篇
  2003年   6篇
  2002年   2篇
  2001年   2篇
  2000年   4篇
  1999年   3篇
  1998年   1篇
  1997年   3篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
排序方式: 共有104条查询结果,搜索用时 15 毫秒
1.
Effluent from dyeing and finishing processes is an important source of water pollution. The effectiveness of bentonite, kaolinite and sediment from a local deposit in removing methylene blue as a cationic dye from aqueous solutions has been investigated. The adsorption equilibrium (isotherm) has been determined according to Freundlich and Langmuir equations. The optimum amount is 0.5 g for all adsorbents, and the optimum pH ranges are 2-8 for bentonite and 2-6 for kaolinite and sediment. With respect to kinetic modelling, the adsorption of methylene blue on various adsorbents was fitted to a second-order equation. Also, the thermodynamic parameters were determined. The negative free energy values indicate the feasibility of the process and spontaneous nature of adsorption. The positive ΔH° values indicate the endothermic nature of the process. Thus, Egyptian clay minerals and sediments have a great tendency to remove the dye from solutions.  相似文献   
2.
Disinfection by-products(DBPs) are formed in swimming pools by the reactions of bather inputs with the disinfectant.Although a wide range of molecules has been identified within DBPs,only few kinetic rates have been reported.This study investigates the kinetics of chlorine consumption,chloroform formation and dichloroacetonitrile formation caused by human releases.Since the flux and main components of human inputs have been determined and formalized through Body Fluid Analogs(BFAs),it is possible to model the DBPs formation kinetics by studying a limited number of precursor molecules.For each parameter the individual contributions of BFA components have been quantified and kinetic rates have been determined,based on reaction mechanisms proposed in the literature.With a molar consumption of 4 mol Cl_2/mol,urea is confirmed as the major chlorine consumer in the BFA because of its high concentration in human releases.The higher reactivity of ammonia is however highlighted.Citric acid is responsible for most of the chloroform produced during BFA chlorination.Chloroform formation is relatively slow with a limiting rate constant determined at 5.50 × 10~(-3) L/mol/sec.L-histidine is the only precursor for dichloroacetonitrile in the BFA.This DBP is rapidly formed and its degradation by hydrolysis and by reaction with hypochlorite shortens its lifetime in the basin.Reaction rates of dichloroacetonitrile formation by L-histidine chlorination have been established based on the latest chlorination mechanisms proposed.Moreover,this study shows that the reactivity toward chlorine differs whether L-histidine is isolated or mixed with BFA components.  相似文献   
3.
通过对含有聚乙烯醇(PVA)印染废水的生化降解动力学的研究,确定表征微生物生长繁殖、自身氧化等的动力学参数,以此作为生化处理工艺设计的重要依据,使之更符合废水的水质特点,从而提高处理效率;同时,通过掌握其处理过程的规律,为工艺管理、运行效果预测,提供比较明确的控制量。  相似文献   
4.
应用线性和非线性法求解有机物生物降解动力学参数   总被引:1,自引:0,他引:1  
根据苯甲酸类化合物在水体中不同时间的生化需氧量,用线性和非线性合法对化合物生物降解随时间变化的动力学过程进行曲线拟合,得到各化合物2个数值不同的安全生化需氧量、生物降解速率常数和生物降解滞后期。根据各化合物2种不同的生物降解动力学模型所得到的生化需氧量拟合值与实测值的误差相比较,发现用非线性法拟合得到的有机物生物降解动力学模型,更符合化合物真实生物降解规律,因此用非线性法拟合化合物的生物降解动态变化,比用线性方法更精确。  相似文献   
5.
生物滴滤池法处理废气动力学模式研究   总被引:3,自引:1,他引:3  
基于物料平衡和微生物降解废水中污染物的动力学模式,以丙酮、甲苯为处理对象提出了生物滴滤池处理废气的模式。当入口浓度C_(in)较低,小于临界浓度C_(crit),时,C=C_(in)EXP((-B/V_g)·H);当人口浓度C_(in)较高,大于临界浓度C_(crit)时,C=C_(in)-(K_0X/V_g)·H。研究表明,实验结果与模式计算结果吻合较好。  相似文献   
6.
催化湿式氧化处理H—酸溶液的反应动力学   总被引:5,自引:1,他引:5  
两阶段一级反应动力学模型和广义动力学模型被用来描述湿式氧化(WAO)及催化湿式氧化(CWAO)反应过程,并确定了动力学参数。2个模型的计算值均与实验值相符,而广义动力学模型相对现准确些。2个确定均表明反尖分2个步骤:首先是H-酸被迅速氧化成小分子有机酸,后者再缓慢氧化,这2个步骤由模型参数加以表征,因而模型可被用来对CWAO催化剂进行评价。  相似文献   
7.
A series of meso-microporous Cu-SAPO-34 catalysts were successfully synthesized by a one-pot hydrothermal crystallization method, and these catalysts exhibited excellent NH_3-SCR performance at low temperature. Their structure and physic chemical properties were characterized by means of X-ray diffraction patterns(XRD), Scanning electron microscopy(SEM), Transmission electron microscopy(TEM), N_2 sorption-desorption, nuclear magnetic resonance(NMR), Inductively Coupled Plasma-Atomic Emission spectrometer(ICP-AES), X-ray absorption spectroscopy(XPS),Temperature-programmed desorption of ammonia(NH_3-TPD), Ultraviolet visible diffuse reflectance spectroscopy(UV-Vis DRS) and Temperature programmed reduction(TPR).The analysis results indicate that the high activities of Cu-SAPO-34 catalysts could be attributed to the enhancement of redox property, the formation of mesopores and the more acid sites. Furthermore, the kinetic results verify that the formation of mesopores remarkably reduces diffusion resistance and then improves the accessibility of reactants to catalytically active sites. The 1.0-Cu-SAPO-34 catalyst exhibited the high NO conversion( 90%) among the wide activity temperature window in the range of 150–425℃.  相似文献   
8.
The fire and explosion risks of metal powders admixed with solid inertants have been extensively investigated for many years. However, it remains unclear why such solid mixtures have high potential fire and explosion risk even when mixed with high percentages of non-combustible solids. This paper investigates how to interpret these risks, from a microscopic perspective, with thermal and kinetic parameters including initial ignition temperature, mass unit exothermic energy, activation energy and risk index of spontaneous combustion. The results show that the initial ignition temperature based on TG (Thermogravimetry) analysis is related to ignition sensitivity, and increased with percentage of admixed solid inertant. The unit mass exothermic energy based on DSC (Differential scanning calorimetry) analysis is related to flame spread velocity. Activation energy and the risk index of spontaneous combustion can be used to explain the reactivity and spontaneous combustion hazard, respectively, of metal powders. We conclude that thermal and kinetic parameters may provide another way to describe the fire and explosion risk of combustible powders, especially for nano metal powders due to the laboratory safety in the normative tests for explosion parameter determination.  相似文献   
9.
10.
Glucose oxidase is a well-known enzyme that catalyzes the oxidation of β-d-glucose to produce gluconic acid and hydrogen peroxide. Fenton reaction is a powerful oxidation technology used for the oxidation of groundwater pollutants. For the application of Fenton reaction in groundwater remediation, successful operation of Fenton reaction near neutral pH, and on-site generation of both H2O2 and chelate will be beneficial. The focus of this experimental study was to couple the glucose oxidation reaction with chelate-based Fenton reaction. The idea was to use the hydrogen peroxide and chelate gluconic acid generated during glucose oxidation for the dechlorination of 2,4,6-trichlorophenol (TCP) by Fenton reaction. The oxidation of glucose was achieved using the enzyme in free and immobilized forms. The rate of production of hydrogen peroxide was determined for each system, and was used to estimate the time required for complete consumption of glucose during the process, thus avoiding any traces of glucose in the Fenton reaction. In the case of free enzyme reaction, separation of the enzyme was achieved using an ultrafiltration membrane before initiating the Fenton reaction. The oxidation of TCP by Fenton reaction was performed at varying ratios of gluconic acid/Fe, and its effect on the decomposition of TCP and H2O2 was studied. TCP degradation was studied both in terms of parent compound degradation and free chloride generation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号