首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   48篇
  免费   0篇
  国内免费   2篇
废物处理   3篇
环保管理   12篇
综合类   16篇
基础理论   3篇
污染及防治   16篇
  2021年   1篇
  2020年   1篇
  2018年   1篇
  2015年   1篇
  2014年   7篇
  2013年   5篇
  2012年   3篇
  2011年   6篇
  2010年   1篇
  2009年   7篇
  2008年   6篇
  2007年   4篇
  2006年   2篇
  2005年   2篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
排序方式: 共有50条查询结果,搜索用时 31 毫秒
1.
Large scale dairy operations are common. In many cases the manure is deposited on a paved surface and then removed with a flushing system, after which the solids are separated, the liquid stored in ponds, and eventually the liquid applied on adjacent crop land. Management of liquid manure to maximize the fertilizer value and minimize water quality degradation requires knowledge of the interactive effects of mineralization of organic N (ON) to NH4+, crop uptake of mineral N, and leaching of NO3 on a temporal basis. The purpose of the research was to use the ENVIRO-GRO model to simulate how the amount of applied N, timing of N application, ON mineralization rates, chemical form of N applied, and irrigation uniformity affected (1) yields of corn (Zea mays) in summer and a forage grass in winter in a Mediterranean climate and (2) the amount of NO3 leached below the root zone. This management practice is typical for dairies in the San Joaquin Valley of California. The simulations were conducted for a 10-year period. Steady state conditions, whereby an equivalent amount of N applied in the organic form will be mineralized in a given year, are achieved more rapidly for materials with high mineralization rates. Both timing and total quantity of N application are important in affecting crop yield and potential N leaching. Major conclusions from the simulations are as follows. Frequent low applications are preferred to less frequent higher applications. Increasing the amount of N application increased both the crop yield and the amount of NO3 leached. Increasing irrigation uniformity increased crop yields but had variable effects on the amount of NO3 leached. A winter forage crop following a summer corn crop effectively reduced the leaching of residual soil N following the corn crop.  相似文献   
2.
The objective of this study was to compare the effects of repeated field applications of three urban compost amendments and one farmyard manure amendment over a 9-year period on aggregate stability in a silty loam soil initially characterized by low clay and initial organic matter contents and poor aggregate stability. Three different aggregate stability tests with increasing disruptive intensities (fast wetting > mechanical breakdown > slow wetting tests) and different disaggregation mechanisms, were used. All of the amendments, which were applied at approximately 4 Mg C ha−1 every other year, increased the organic carbon content and improved the stability of the aggregates against the disruptive action of water, as determined by each of the stability tests. However, the year-to-year variations in the aggregate stability that related to factors other than the organic inputs were greater than the cumulative increase in aggregate stability relative to the control. The positive effects of the tested amendments on aggregate stability were linked to their contribution to soil organic C contents (r = 0.54 for the fast wetting test and r = 0.41-0.42 for the mechanical breakdown and slow wetting tests; p < 0.05). The addition of urban composts had a larger positive effect on aggregate stability than farmyard manure at the majority of sampling dates. The addition of biodegradable immature compost, such as municipal solid waste (MSW), improved the aggregate stability through an enhanced resistance to slaking. The addition of mature composts, such as the co-compost of sewage sludge and green wastes (GWS) or biowaste compost (BW), improved the aggregate stability by increasing interparticular cohesion. The MSW compost was the most efficient in improving aggregate stability during the first 6 years of the experiment (average improvements of +22%, +5% and +28% in the fast wetting, mechanical breakdown and slow wetting tests, respectively, compared to the control treatment); this result was likely due to the larger labile organic pool of the MSW compost that was highly effective at stimulating soil microbial activity. After the first 6 years, the two other composts, GWS and BW, became more efficient (average improvements of +25%, +61% and +33% in the fast wetting, mechanical breakdown and slow wetting tests, respectively, compared to the control treatment), which was probably linked to the greater increase in soil organic C contents. Therefore, the application of urban compost to silty soil that is susceptible to water erosion was effective at improving aggregate stability and thus could be used to enhance the resistance of soil to water erosion.  相似文献   
3.
利用牛粪生产沼气,并将副产物有效利用是处理牛粪污的有效途径,为提高牛粪厌氧发酵的产气效率和副产物的利用率,整体工艺采用牛粪发酵前固液分离,固体进行好氧发酵回填牛卧床,分离液进行厌氧-好氧发酵,厌氧发酵产生沼气为系统增温,最后液体通过人工湿地处理达标排放。结果表明:对牛粪进行发酵前固液分离,降低了物料的粘度,利于微生物的传质,可以取得较好的产气效果,沼气通过沼气燃烧炉转化为热能为系统增温降低了其他能源的供给,同时湿地的利用也有效地改善了养牛场周边环境,为牛粪污生产沼气工程提供新思路。  相似文献   
4.
A need exists to improve the utilization of manure nutrients by minimizing NH3 emissions from land application of manure. Management strategies to reduce NH3 emissions are available; however, few have been validated under Canadian conditions. A well tested and accurate simulation model, however, can help overcome this challenge by determining appropriate management strategies for a given set of field conditions.  相似文献   
5.
Source water protection planning (SWPP) is an approach to prevent contamination of ground and surface water in watersheds where these resources may be abstracted for drinking or used for recreation. For SWPP the hazards within a watershed that could contribute to water contamination are identified together with the pathways that link them to the water resource. In rural areas, farms are significant potential sources of pathogens. A risk-based index can be used to support the assessment of the potential for contamination following guidelines on safety and operational efficacy of processes and practices developed as beneficial approaches to agricultural land management. Evaluation of the health risk for a target population requires knowledge of the strength of the hazard with respect to the pathogen load (massxconcentration). Manure handling and on-site wastewater treatment systems form the most important hazards, and both can comprise confined and unconfined source elements. There is also a need to understand the modification of pathogen numbers (attenuation) together with characteristics of the established pathways (surface or subsurface), which allow the movement of the contaminant species from a source to a receptor (water source). Many practices for manure management have not been fully evaluated for their impact on pathogen survival and transport in the environment. A key component is the identification of potential pathways of contaminant transport. This requires the development of a suitable digital elevation model of the watershed for surface movement and information on local groundwater aquifer systems for subsurface flows. Both require detailed soils and geological information. The pathways to surface and groundwater resources can then be identified. Details of land management, farm management practices (including animal and manure management) and agronomic practices have to be obtained, possibly from questionnaires completed by each producer within the watershed. To confirm that potential pathways are active requires some microbial source tracking. One possibility is to identify the molecular types of Escherichia coli present in each hazard on a farm. An essential part of any such index is the identification of mitigation strategies and practices that can reduce the magnitude of the hazard or block open pathways.  相似文献   
6.
Abstract

Greenhouse studies were conducted to determine the influence of waste‐activated carbon (WAC), digested municipal sewage sludge (DMS), and animal manure on herbicidal activity of atrazine [2‐chloro‐4‐(ethylamino)‐6‐(isopropylamino)‐s‐trazine] and alachlor [2‐chloro‐2’,6'‐diethyl‐N‐(methoxymethyl)acetanilide] in a Plainfield sandy soil. Amendments generally reduced bioactivity against oat (Avena sativa L.) and Japanese millet (E. crus‐galli frumentacea). The extent to which herbicide phytotoxicity was inhibited depended upon the application rate and the kind of soil amendment. WAC, applied at the loading rate of 2.1 mt C/ha, showed a significant inhibitory effect on both herbicides. In DMS‐ and manure‐amended soil, the reduction of atrazine activity was not significant at the rate of 8.4 mt C/ha, but reduction of alachlor activity was significant at the rate of 4.2 mt C/ha. Despite inhibition of herbicidal activity, the ED50 of atrazine and alachlor was below 2 ppm in most of the amendment treatments. Before adopting carbon‐rich waste amendments as management practices for controlling pesticide leaching in coarse‐textured soils, further studies are needed to characterize how alterations in sorption, leaching and degradation may affect herbicidal activity.  相似文献   
7.
Abstract

A laboratory pot experiment was conducted to study the effect of amending soil with four different sources of organic matter on the degradation rate of α and β endosulfan isomers. Poultry by-product meal, poultry manure, dairy manure, and municipal solid waste compost were cured, dried, ground (<1 mm) and thoroughly mixed with a calcareous soil at a rate of 2% and placed in plastic pots. Endosulfan was added at the rate of 20 mg kg?1. The moisture level was kept near field capacity and the pots were kept at room temperature. Soil sub-samples, 100 g each, were collected from every pot at days 1, 8, 15, 22, 29, 43, and 57 for the measurement of endosulfan isomers. Endosulfan residues were extracted from the soil samples with acetone. The supernatant was filtered through anhydrous sodium sulphate, 5 mL aliquot was diluted to 25 mL with hexane, mixed well, and then two sub-samples from the filtrates were analyzed for α and β endosulfan isomers by gas chromatography. The results indicated that the half-life (T ½) of α-endosulfan in the poultry by-product meal treatment was 15 days compared to about 22 days in the other treatments. The T ½ of β-endosulfan was 22 days in the poultry by-product meal treatment and followed a bi-phasic pattern, 57 days in the municipal solid waste compost treatment and the extrapolated T ½ was about 115 days for the other three treatments.  相似文献   
8.
An experimental study was conducted in Tillamook, Oregon, USA, to quantify the effectiveness of edge-of-field vegetated buffers for reducing transport of fecal coliform bacteria (FCB) from agricultural fields amended with dairy cow manure. Installation of vegetated buffers on loamy soils dramatically reduced the bacterial contamination of runoff water from manure-treated pasturelands, but the size of the vegetated buffer was not an important determinant of bacterial removal efficiency. Only 10% of the runoff samples collected from treatment cells having vegetated buffers exhibited FCB concentrations >200 colony forming units (cfu)/100 mL (a common water quality standard value), and the median concentration for all cells containing vegetated buffers was only 6 cfu/100 mL. The presence of a vegetated buffer of any size, from 1 to 25 m, generally reduced the median FCB concentration in runoff by more than 99%. Results for FCB load calculations were similar. Our results suggest that where substantial FCB contamination of runoff occurs from manure-treated pasturelands, it might be disproportionately associated with specific field or management conditions, such as the presence of soils that exhibit low water infiltration and generate larger volumes of runoff or the absence of a vegetated buffer. Buffer size regulations that do not consider such differences might not be efficient or effective in reducing bacterial contamination of runoff.  相似文献   
9.
Heise J  Höltge S  Schrader S  Kreuzig R 《Chemosphere》2006,65(11):2352-2357
For sulfonamides, the formation of non-extractable residues has been identified by laboratory testing as the most relevant concentration determining process in manured soil. Therefore, the present study has been focused on the chemical and biological characterization of non-extractable residues of 14C-labeled sulfadiazine or sulfamethoxazole. In laboratory batch experiments, the test substances were spiked via standard solution or test slurry to microbially active soil samples. After incubation periods of up to 102 d, a sequential extraction technique was applied. Despite the exhaustive extraction procedure, sulfadiazine residues mainly remained non-extractable, indicating the high affinity to the soil matrix. The remobilization of non-extractable 14C-sulfadiazine residues was monitored in the activated sludge test and the Brassica rapa test. Only small amounts (<3%) were transferred into the extractable fractions and 0.1% was taken up by the plants. In the Lumbricus terrestris test A, the release of non-extractable 14C-sulfamethoxazole residues by the burrowing activity of the earthworms was investigated. The residues mainly remained non-extractable (96%). The L. terrestris test B was designed to study the immobilization of 14C-sulfamethoxazole in soil directly after the test slurry application. The mean uptake by earthworms was 1%. Extractable and non-extractable residues amounted to 5% and 93%, respectively. Consequently, the results of all tests confirmed the high affinity of the non-extractable sulfonamide residues to the soil matrix.  相似文献   
10.
Cover crop effects on nitrous oxide emission from a manure-treated Mollisol   总被引:1,自引:0,他引:1  
Agriculture contributes 40–60% of the total annual N2O emissions to the atmosphere. Development of management practices to reduce these emissions would have a significant impact on greenhouse gas levels. Non-leguminous cover crops are efficient scavengers of residual soil NO3, thereby reducing leaching losses. However, the effect of a grass cover crop on N2O emissions from soil receiving liquid swine manure has not been evaluated. This study investigated: (i) the temporal patterns of N2O emissions following addition of swine manure slurry in a laboratory setting under fluctuating soil moisture regimes; (ii) assessed the potential of a rye (Secale cereale L.) cover crop to decrease N2O emissions under these conditions; and (iii) quantified field N2O emissions in response to either spring applied urea ammonium nitrate (UAN) or different rates of fall-applied liquid swine manure, in the presence or absence of a rye/oat winter cover crop. Laboratory experiments investigating cover crop effects N2O emissions were performed in a controlled environment chamber programmed for a 14 h light period, 18 °C day temperature, and 15 °C night temperature. Treatments with or without a living rye cover crop were treated with either: (i) no manure; (ii) a phosphorus-based manure application rate (low manure): or (iii) a nitrogen-based manure application rate (high manure). We observed a significant reduction in N2O emissions in the presence of the rye cover crop. Field experiments were performed on a fine-loamy soil in Central Iowa from October 12, 2005 to October 2, 2006. We observed no significant effect of the cover crop on cumulative N2O emissions in the field. The primary factor influencing N2O emission was N application rate, regardless of form or timing. The response of N2O emission to N additions was non-linear, with progressively more N2O emitted with increasing N application. These results indicate that while cover crops have the potential to reduce N2O emissions, N application rate may be the overriding factor.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号