首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
  国内免费   1篇
安全科学   2篇
废物处理   4篇
环保管理   2篇
综合类   4篇
污染及防治   1篇
  2020年   1篇
  2013年   1篇
  2012年   1篇
  2008年   2篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1992年   1篇
排序方式: 共有13条查询结果,搜索用时 20 毫秒
1.
垃圾焚烧炉飞灰的低温玻璃固化初步研究   总被引:34,自引:1,他引:34  
在研究我国城市生活垃圾焚烧炉飞灰的毒性特征和高温灼烧特性的基础上,试验了几种常用玻璃熔制助溶剂、烟气净化产物中的成分对飞灰的溶融温度和熔融减量的影响,以实现低温玻璃固化。实验发现受热温度越高、时间越长,飞灰减量越大;B2O3、硼砂、CaF2对飞灰助溶效果明显,而废玻璃、CaO、CaCl2能使悄灰溶融后形成的玻璃态物质地均匀、少孔。按一定比例同时加入硼砂、CaF2、废玻璃、CaO、CaCl2于飞灰中,混合物的熔融温度降到1000℃以下,大大低于飞灰自身的熔融温度(1200℃)。对该熔融物在空气中淬火形成的玻璃态物质按标准方法浸沥,选择测量了浸出液中铅、汞、镉、砷的浓度,初步发现低温玻璃态物质对重金属铅和镉具有较好的固化效果,而对汞有砷的固化效果尚不确定。  相似文献   
2.
This article reports the operational results of the effective utilization of hospital waste molten slag produced using a high-temperature melting system, and being operated at a hospital in Selangor, Malaysia. The hospital waste is incinerated and subsequently melted at 1200°C. Scanning election microscope (SEM)/EDX results showed that the slag produced after melting contained amounts of SiO2, CaO, and Al2O3 in excess of 53%, 9%, and 16%, respectively. The results from a leaching analysis on the slag produced proved that the melting process had successfully stabilized the heavy metals. The use of this slag as an alternative material to replace conventional aggregates for road construction was studied. The results from aggregate and asphalt mix tests showed that the slag produced fulfills all the requirements of an alternative aggregate. The average asphalt content, or the optimum asphalt content to be mixed with hospital waste molten slag, was found to be about 5.53%.  相似文献   
3.
在对印刷、铁路车辆、电缆压铅、铅蓄电池、铅盐、铅冶炼这六个行业的熔铅作业以及对铅蓄电池和铅盐生产的铅尘作业中防毒工程技术措施调研的基础上,介绍了它们的基本情况。参照收集的国内外资料,采用定性及定量化的方法,对它们的防毒工程技术措施分别从工艺设备、排风罩类型、净化装置等得出优化选择结论,对还存在的问题进行讨论并提出建议。  相似文献   
4.
垃圾焚烧飞灰熔融过程中重金属迁移分布规律的研究   总被引:1,自引:0,他引:1  
垃圾焚烧飞灰处理中重金属污染一直是倍受关注的问题。采用高温熔融法处理飞,该工艺具有二恶英去除率高、高效减容、有效固化重金属、熔渣可资源化利用等优点。目前学术界针对重金属在熔融过程中的迁移分布规律,研究了温度、碱度、添加剂、气氛、熔融时间等因素对重金属分布的影响。但关于影响程度的量化及影响机制的阐述,仍需要进一步探讨。  相似文献   
5.
城市垃圾焚烧溶融灰渣,选择筛分不同粒径,混合配比添加木屑、烧结剂、淀粉等,烧结成透水性砖块,作性能试验考查弯曲强度和透水性能。本实验适用于垃圾焚烧灰渣、飞灰及下水污泥焚烧灰渣等的有效处理及资源化再利用。  相似文献   
6.
Carbonaceous matter has an important impact on glacial retreat in the Tibetan Plateau, further affecting the water resource supply. However, the related studies on carbonaceous matter are still scarce in Geladaindong (GLDD) region, the source of the Yangtze River. Therefore, the concentration, source and variations of carbonaceous matter at Ganglongjiama (GLJM) glacier in GLDD region were investigated during the melting period in 2017, which could deepen our understanding on carbonaceous matter contribution to glacier melting. The results showed that dissolved organic carbon (DOC) concentration of snowpit samples (283?±?200?μg/L) was much lower than that of precipitation samples (624?±?361?μg/L), indicating that large parts of DOC could be rapidly leached from the snowpit during the melting process. In contrast, refractory black carbon (rBC) concentration measured by Single Particle Soot Photometer of snowpit samples (4.27?±?3.15?μg/L) was much higher than that of precipitation samples (0.97?±?0.49?μg/L). Similarly, DOC with high mass absorption cross-section measured at 365?nm value was also likely to enrich in snowpit during the melting process. In addition, it was found that both rBC and DOC with high light-absorbing ability began to leach from the snowpit when melting process became stronger. Therefore, rBC and DOC with high light-absorbing ability exhibited similar behavior during the melting process. Based on relationship among DOC, rBC and K+ in precipitation, the main source of carbonaceous matter in GLJM glacier was biomass burning during the study period.  相似文献   
7.
8.
Metallic phases in slags and their influence on the leaching characteristics were investigated. The proportions of metallic phase in four slags were 0.028%, 0.24%, 1.87%, and 3.05% by weight. The lead content was 10–248 mg/kg in bulk slag after metal removal, while in the metallic phase it was 579–7390 mg/kg. Lead concentrations in the metallic phase were more than ten times higher than in slags after metal removal. Lead was distributed in the metallic phase at 2.0%, 8.3%, 10.3%, and 47.4%. The concentrations of all metallic elements in metallic phases were much higher than in bulk slag. Iron, copper, and nickel had accumulated in magnetic metals, while aluminum and zinc were found in nonmagnetic metals. As regards chromium, manganese, lead, and tin, the proportion of metallic phases depended on the slag samples. By removing metallic phases, both water and pH 4 leachable lead decreased. The basic principles of melting residues containing lead are the separation of lead as a metal in reductive melting, and the containment of lead ions into uniform glassy particles in oxidization melting. Melting slag can be seen to contribute to environmental preservation by facilitating the recycling of materials through the separation of metals from melting slag. Received: February 21, 2000 / Accepted: July 27, 2000  相似文献   
9.
This study evaluates the effects of co-gasification of municipal solid waste with and without the municipal solid waste bottom ash using two large-scale commercial operation plants. From the viewpoint of operation data, there is no significant difference between municipal solid waste treatment with and without the bottom ash. The carbon conversion ratios are as high as 91.7% and 95.3%, respectively and this leads to significantly low PCDD/DFs yields via complete syngas combustion. The gross power generation efficiencies are 18.9% with the bottom ash and 23.0% without municipal solid waste bottom ash, respectively. The effects of the equivalence ratio are also evaluated. With the equivalence ratio increasing, carbon monoxide concentration is decreased, and carbon dioxide and the syngas temperature (top gas temperature) are increased. The carbon conversion ratio is also increased. These tendencies are seen in both modes.Co-gasification using the gasification and melting system (Direct Melting System) has a possibility to recover materials effectively. More than 90% of chlorine is distributed in fly ash. Low-boiling-point heavy metals, such as lead and zinc, are distributed in fly ash at rates of 95.2% and 92.0%, respectively. Most of high-boiling-point heavy metals, such as iron and copper, are distributed in metal. It is also clarified that slag is stable and contains few harmful heavy metals such as lead. Compared with the conventional waste management framework, 85% of the final landfill amount reduction is achieved by co-gasification of municipal solid waste with bottom ash and incombustible residues. These results indicate that the combined production of slag with co-gasification of municipal solid waste with the bottom ash constitutes an ideal approach to environmental conservation and resource recycling.  相似文献   
10.
The results of the treatment of fly ash from a municipal solid waste incinerator (MSWI) by melting are described, and the safety and the effectiveness of using the slag produced by this melting treatment are studied. The properties of the MSWI fly ash slag were analyzed, to evaluate the feasibility of its reuse as a substitute for part of the cement required in mortar preparation. This MSWI fly ash slag was found to be comprised mainly of SiO2 and CaO, which can be substituted for up to 20% of the cement content in mortar, without sacrificing the quality of the resultant concrete. In fact, the concrete thus produced has greater compressive strength, 10% higher than that without the substitution. The setting time of the fresh mortar becomes lengthens as increasing amounts of cement are replaced; while the spread flow value increases with the increasing percentage of cement substitution. X-ray diffraction analysis reveals that when the W/C=0.38 and the curing AGE=28 days, the crystal patterns in the mortar samples, prepared with different amounts of cement having been replaced by MSWI fly ash slag are similar. According to the results of the toxic characteristic leaching procedure analysis, MSWI fly ash slag should be classified as general non-hazardous industrial waste, that meets the effluent standard. Therefore, the reuse of MSWI fly ash slag is feasible, and will not result in pollution due to the leaching of heavy metals.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号