首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
安全科学   1篇
综合类   2篇
基础理论   2篇
污染及防治   2篇
  2020年   1篇
  2012年   1篇
  2011年   1篇
  2009年   2篇
  2007年   1篇
  1996年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
Numerous studies have focussed on the relationship between female choice and the multiple exaggerated sexual traits of males. However, little is known about the ability of males to actively enhance specific components of their display in response to the loss of one component. We investigated the capacity of male satin bowerbirds (Ptilonorhynchus violaceus) to respond to the loss of one of their sexual signals by performing an experiment in which we removed decorations at their bowers. We found that males compensated for decoration loss by increasing bower construction behaviour and decreasing their latency to bower painting. These results are novel because they suggest that males can assess the quality of their own display and make decisions about how to augment their displays. We discuss these results in the context of previous studies of mate choice in satin bowerbirds, as both of the supplementary behaviours we observed are known correlates of male mating success.  相似文献   
2.
近海沉积物组份对有机物的吸附与吸附机理探讨   总被引:8,自引:0,他引:8  
以大连近海沉积物主要组份碳酸钙、金属氧化物、腐殖酸和粘土矿物为沉积物模拟样品,测定该4种组份对硝基苯等4种毒性有机的吸附等温线,在此基础上建立了多组份吸附剂吸附等温模式。通过吸附热的测定,探付了4种沉积物组份吸附毒性有机物的机理,并比较了相对吸附能力大小  相似文献   
3.
4.
Compound contamination and toxicity interaction necessitate the development of models that have an insight into the combined toxicity of chemicals. In this paper, a novel and simple model dependent only on the mixture information (MIM), was developed. Firstly, the concentration-response data of seven groups of binary and multi-component (pseudo-binary) mixtures with different mixture ratios to Vibrio qinghaiensis sp.-Q67 were determined using the microplate toxicity analysis. Then, a desirable non-linear function was selected to fit the data. It was found that there are good linear correlations between the location parameter (α) and mixture ratio (p) of a component and between the steepness (β) and p. Based on the correlations, a mixture toxicity model independent of pure component toxicity profiles was built. The model can be used to accurately estimate the toxicities of the seven groups of mixtures, which greatly simplified the predictive procedure of the combined toxicity.  相似文献   
5.
6.
The critical pressure ratio (ηc) is an essential parameter for computing the vapor-liquid two-phase critical pressure and mass flow rate of multicomponent hydrocarbon mixtures flowing through valves and leakage orifices. The Homogeneous Non-Equilibrium Diener-Schmidt (HNE-DS) model widely used to calculate ηc assumes that the fluid's volume linearly changes with the pressure (using the Clausius-Clapeyron equation), which is not suitable for multicomponent gas mixtures. In this paper, a new Homogeneous Non-Equilibrium (new-HNE) model is proposed to calculate ηc of gas mixtures. Firstly, a new critical flow compressibility factor (ωc) is developed from its thermodynamic definition and the Peng-Robinson equation of state (EOS), overcoming the inherent limitations of the Clausius-Clapeyron equation. Then, ηc is correlated to the newly derived ωc by fitting experimental data at various pressures and gas mass fractions of both single-component and multicomponent gas mixtures, yielding the new HNE-DS model. Results show that, for the water-steam and air-water two-phase flow, the average relative deviations (ARD) between the calculated critical pressure ratios and experimental values are equal to 2.8% and 4.93%, respectively, which represents a significant improvement in comparison with the original HNE-DS model. Moreover, this new model is extended to the applications of Liquefied natural gas (LNG)/liquefied petroleum gas (LPG) fluids, and will further contribute to the calculation of the leakage mass flow rate of fluid flowing through the orifices/valves.  相似文献   
7.
The aim of the paper is first to develop a non-equilibrium thermodynamic model of a multi-species ecosystem. The key to this is the expression of entropy-production (change of entropy) which is equivalent to a well-known expression of Liapunov function used in many problems of ecological and chemical reaction systems. On the basis of the expression of entropy-production we have made an entropic (thermodynamic) analysis of ecological stability (both global and local) including the study of interrelation between ecological diversity and stability. As illustrative examples we have discussed some basic problems of classical and generalized Lotka–Volterra systems.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号