首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   803篇
  免费   25篇
  国内免费   285篇
安全科学   20篇
废物处理   15篇
环保管理   70篇
综合类   496篇
基础理论   185篇
污染及防治   242篇
评价与监测   61篇
社会与环境   24篇
  2023年   13篇
  2022年   24篇
  2021年   16篇
  2020年   22篇
  2019年   26篇
  2018年   25篇
  2017年   29篇
  2016年   37篇
  2015年   51篇
  2014年   43篇
  2013年   90篇
  2012年   59篇
  2011年   93篇
  2010年   61篇
  2009年   71篇
  2008年   87篇
  2007年   77篇
  2006年   59篇
  2005年   31篇
  2004年   36篇
  2003年   31篇
  2002年   22篇
  2001年   18篇
  2000年   26篇
  1999年   13篇
  1998年   4篇
  1997年   12篇
  1996年   12篇
  1995年   4篇
  1994年   6篇
  1993年   3篇
  1991年   1篇
  1989年   1篇
  1988年   1篇
  1986年   2篇
  1985年   1篇
  1984年   2篇
  1980年   1篇
  1979年   2篇
  1977年   1篇
排序方式: 共有1113条查询结果,搜索用时 218 毫秒
1.
2.
Hydrilla verticillata(waterthyme) has been successfully used for phytoremediation in arsenic(As) contaminated water.To evaluate the effects of environmental factors on phytoremediation,this study conducted a series of orthogonal design experiments to determine optimal conditions,including phosphorus(P),nitrogen(N),and arsenate(As(Ⅴ))concentrations and initial pH levels,for As accumulation and biotransformation using this aquatic plant species,while also analyzing As species transformation in culture media after 96-hr exposure.Analysis of variance and the signal-to-noise ratio were used to identify both the effects of these environmental factors and their optimal conditions for this purpose.Results indicated that both N and P significantly impacted accumulation,and N was essential in As species transformation.High N and intermediate P levels were critical to As accumulation and biotransformation by H.verticillata,while high N and low P levels were beneficial to As species transformation in culture media.The highest total arsenic accumulation was(197.2±17.4) μg/g dry weight when As(V) was at level 3(375μg/L),N at level 2(4 mg/L),P at level 1(0.02 mg/L),and pH at level 2(7).Although H.verticillata is highly efficient in removing As(Ⅴ) from aquatic environments,its use could be potentially harmful to both humans and the natural environment due to its release of highly toxic arsenite.For cost-effective and ecofriendly phytoremediation of As-contaminated water,both N and P are helpful in regulating As accumulation and transformation in plants.  相似文献   
3.
以VPO为活性组分,N掺杂TiO 2为载体,采用浸渍法制备了VPO/TiN催化剂,基于单因素实验研究了其对NO的选择性催化氧化(SCO)性能以及抗硫抗水性能。研究表明:当P/V为1/5、N/Ti为1、活性组分负载量为10%、焙烧温度为350℃时,催化剂的SCO活性最好,NO氧化率达到61%;光致发光光谱(PL)表征显示N掺杂TiO 2在催化剂表面形成的氧空位可增强催化剂对O 2的吸附;VPO/TiN催化剂抗硫抗水性能较强,反应后的催化剂表面未发现硫酸根的特征峰,水蒸气主要通过与NO竞争吸附占据活性位点来抑制催化剂的SCO活性。  相似文献   
4.
Seaports are major hubs of economic activity and of environmental pollution in coastal urban areas. Due to increasing global trade, transport of goods through ports has been steadily increasing and will likely continue to increase in the future. Evaluating air pollution impacts of ports requires consideration of numerous sources, including marine vessels, trucks, locomotives, and off-road equipment used for moving cargo. The air quality impacts of ports are significant, with particularly large emissions of diesel exhaust, particulate matter, and nitrogen oxides. The health effects of these air pollutants to residents of local communities include asthma, other respiratory diseases, cardiovascular disease, lung cancer, and premature mortality. In children, there are links with asthma, bronchitis, missed school days, and emergency room visits. The significance of these environmental health impacts requires aggressive efforts to mitigate the problem. Approaches to mitigation encompass a range of possibilities from currently available, low-cost approaches, to more significant investments for cleaner air. Examples of the former include restrictions on truck idling and the use of low-sulfur diesel fuel; the latter includes shore-side power for docked ships, and alternative fuels. A precautionary approach to port-related air pollution would encourage local production of goods in order to reduce marine traffic, greener design for new terminals, and state-of-the art approaches to emissions-control that have been successfully demonstrated at ports throughout the world.  相似文献   
5.
Soil to plant transfer factor (TF) of60Co and 65Zn was determined fromradioisotope experiments on plants grown in pots underoutdoor ambient tropical conditions for three growingseasons (1995–1998). The TFs were obtained fordifferent plants/crops such as, rice, bean, peanutspineapple, cabbage, tomato, spinach and grass. Theaverage TF values of 60Co are found to be 0.087,0.15, 0.12, 0.67, 0.28, 0.79, 1.03 and 0.34respectively for the above mentioned plants/crops. Incase of 65Zn, the average TF values are found tobe 2.24, 1.17, 0.89, 1.09, 0.78, 1.34, 2.92 and 1.78,respectively, for the above mentioned plants/crops. Thedata will be useful to assess the radiation exposureto man associated with the releases of radionuclidesfrom nuclear facilities by means of radiologicalassessment models that require transfer factors asinput parameters to predict the contamination ofradionuclides in foodchain.  相似文献   
6.
通过对2014—2016年湖体水质中氮素质量浓度分析,结合出入湖总氮浓度、水量、湖体水生生态等影响因素,发现太湖水体中总氮浓度呈现逐年下降的趋势,各监测点位总氮为0.530 mg/L~5.51 mg/L,时空分布不均,差异明显。时间上,总氮浓度表现为春季最高,夏季和秋季最低,且月均值变化曲线呈现出规律的正弦函数波形。空间上,总氮浓度大致表现出由西部湖区向东部湖区递减的趋势,呈现西部湖区﹥北部湖区﹥南部湖区﹥湖心区﹥东部湖区。要改善湖体水质,不仅要切断污染源,而且要加强水生生态功能修复。  相似文献   
7.
探讨无回流间歇曝气系统 (简称 NBIAS) ,处理城市污水的污泥龄 ( SRT)对脱氮除磷及有机物去除效果的影响。通过原污水流程试验和人工合成污水静态模拟实验 ,试验结果表明 :在水温为 2 0℃~ 30℃ ,污泥负荷为 0 .2 5~0 .45kg CODcr/ kg MLSS· d,SRT为 1 8~ 2 2 d,HRT为 8~ 1 0 h时 ,利用原污水作为碳源 ,NBIAS在保持较高的 CODcr去除率的同时 ,总氮和总磷的去除率均在 80 %以上。  相似文献   
8.
LawsofannualnutrientuptakeinaPaulowniaplantation¥WuGang(ResearchCenterforEco-EnvironmentalSciences,ChineseAcademyofSciences,B...  相似文献   
9.
Nitrate is prone to leaching in the sandy soils of the West African moist savannas. Better management of nitrogen (N) resources and maize cultivars with enhanced genetic capacity to capture and utilize soil and fertilizer N are strategies that could improve N-use efficiency. In two field experiments conducted at Zaria, northern Nigeria, five maize (Zea mays L.) cultivars planted early in the season were assessed under various N levels for differences in N uptake, soil N dynamics, and related N losses. Cultivar TZB-SR accumulated more N in the aboveground plant parts in both years than the other cultivars. All, except the semi-prolific late (SPL) variety, met about 50–60% of their N demand by the time of silking (64–69 DAP). In both years, SPL had the greatest capacity to take up N during the grain filling period, and it had the highest grain-N concentration and the least apparent N loss through leaching in the second year. There were no significant differences in soil N dynamics among cultivars in both years. At harvest, the residual N in the upper 90 cm of the profile under all the cultivars ranged from 56 to 72 kg ha−1 in the first year and from 73 to 83 kg ha−1 in the second year. Apparent N loss from 0 to 90 cm soil profile through leaching ranged from 35 to 122 kg ha−1 in both years. N application significantly increased N uptake by more than 30% at all sampling dates in the second year of the experiment, but had no effect on apparent N loss. Results indicate that the use of maize cultivars with high N uptake capacity during the grain filling period when maximum leaching losses occur could enhance N recovery and may be effective in reducing leaching losses of mineral N in the moist savanna soils.  相似文献   
10.
Oxidation-absorption technology is a key step for NOx removal from low-temperature gas. Under the condition of low O3 concentration (O3/NO molar ratio = 0.6), F-TiO2 (F-TiO2), which is cheap and environmentally friendly, has been prepared as ozonation catalysts for NO oxidation. Catalytic activity tests performed at 120°C showed that the NO oxidation efficiency of F-TiO2 samples was higher than that of TiO2 (about 43.7%), and the NO oxidation efficiency of F-TiO2-0.15 was the highest, which was 65.3%. Combined with physicochemical characteristics of catalysts and the analysis of active species, it was found that there was a synergistic effect between F sites and oxygen vacancies on F-TiO2, which could accelerate the transformation of monomolecular O3 into multi-molecule singlet oxygen (1O2), thus promoting the selective oxidation of NO to NO2. The oxidation reaction of NO on F-TiO2-0.15 follows the Eley-Rideal mechanism, that is, gaseous NO reacts with adsorbed O3 and finally form NO2.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号