首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   3篇
  国内免费   5篇
废物处理   1篇
环保管理   1篇
综合类   9篇
基础理论   1篇
污染及防治   3篇
  2020年   1篇
  2017年   2篇
  2016年   2篇
  2012年   3篇
  2011年   1篇
  2008年   2篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2002年   1篇
排序方式: 共有15条查询结果,搜索用时 15 毫秒
1.
Chemical precipitation to form magnesium ammonium phosphate (MAP) is an effective technology for recovering ammonium nitrogen (NH4 +-N). In the present research, we investigated the thermodynamic modeling of the PHREEQC program for NH4 +-N recovery to evaluate the effect of reaction factors on MAP precipitation. The case study of NH4 +-N recovery from coking wastewater was conducted to provide a comparison. Response surface methodology (RSM) was applied to assist in understanding the relative significance of reaction factors and the interactive effects of solution conditions. Thermodynamic modeling indicated that the saturation index (SI) of MAP followed a polynomial function of pH. The SI of MAP increased logarithmically with the Mg2+/NH4 + molar ratio (Mg/N) and the initial NH4 +-N concentration (CN), respectively, while it decreased with an increase in Ca2+/NH4 + and CO3 2??/NH4 + molar ratios (Ca/N and CO3 2??/N), respectively. The trends for NH4 +-N removal at different pH and Mg/N levels were similar to the thermodynamic modeling predictions. The RSM analysis indicated that the factors including pH, Mg/N, CN, Ca/N, (Mg/N) (CO3 2??/N), (pH)2, (Mg/N)2, and (CN)2 were significant. Response surface plots were useful for understanding the interaction effects on NH4 +-N recovery.  相似文献   
2.
Song Y  Hahn HH  Hoffmann E 《Chemosphere》2002,48(10):1029-1034
To understand the effects of solution conditions on the precipitation of calcium phosphates from wastewater for recovery, a computer programme PHREEQC was employed to calculate the speciation and saturation-index (SI) with respect to hydroxyapatite of a chemically defined precipitation system, which contains phosphate of 1–200 mg P/l, with Ca/P molar ratios of one to 10 times of the stoichiometric calcium to phosphorus molar ratio of hydroxyapatite, at a pH range of 7.0–11.0. The results show that the SI is respectively the logarithmic function of the phosphate concentration and the calcium concentration, increasing with the increase of either of them; the SI is a polynomial function of the solution pH value and increases with its increase, and the effect of solution pH value is due to its influence on base uptake of the precipitation reaction and the speciation of phosphate and calcium ions; the SI is also a logarithmic function of the solution ionic strength but decreases with its increase; at the temperature range of 5–30 °C the SI increases linearly with solution temperature and the effect of temperature is also due to its influence on the speciation of phosphate and calcium ions.  相似文献   
3.
基于生态槽实验的藻类生长参数确定   总被引:8,自引:0,他引:8  
逄勇  丁玲  高光 《环境科学》2005,26(3):78-82
在太湖湖泊生态系统研究站的生态模拟槽中进行了藻类的动态模拟实验.取太湖原水至生态槽中,在温度、光照、营养盐变化条件下进行采样,观察藻类的变化情况.在生态槽实验基础上应用PHREEQC模型建立了藻类生长模型,模型中考虑了氮及磷营养盐的循环过程.利用生态模拟槽实验结果对太湖藻类生长模型的各参数进行了详细的率定验证,并应用最小二乘法确定最佳的一组参数,藻类及各种营养盐浓度的模拟值均能较好地拟合实验测量值.  相似文献   
4.
To reveal the basic characteristics and controlling factors of water quality change in the project Wenyu to Chaobai reclaimed water diversion, the water quality in the study area was monitored for one year at seven monitoring sites. Inverse geochemical models of the statistical groups were developed using PHREEQC to elucidate the hydrochemistry characteristics of reclaimed water and the factors. The monitoring results indicated that nitrogen and phosphorus contents were significantly reduced along the river mainly caused by seasonal and location variation. The pH ranged from 7.44 to 9.81. Photosynthesis of algae and denitrification in anaerobic microenvironment ultimately led to a sudden p H increase after the Jian River and the Chaobai River confluence. Mg~(2+)and SO_4~(2-) levels dropped obviously in the summer and increased in winter seasons after intersection. Na+and Cl-are relatively stable, and marked drop in the concentration only after the two rivers meet. And there is a decrease of Ca~(2+) and HCO~(3-) and increase in CO_3~(2-) during monitoring period. As a whole, the primary ions and nutrient components, including nitrogen and phosphorus, had high levels in winter. Algae's photosynthesis and respiration were observed to have an impact on the river water quality; there was precipitation–dissolution of minerals and denitrification from upstream to downstream. Inverse geochemical PHREEQC modeling confirmed that there was precipitation of aragonite or calcite, and gypsum or anhydrite in summer, and dissolution in winter; as well as precipitation of dolomite in winter, and cationic exchange and denitrification along the river.  相似文献   
5.
Dabaoshan Mine, the largest mine in south China, has been developed since the 1970s. Acid mine drainage (AMD) discharged from the mine has caused severe environmental pollution and human health problems. In this article, chemical characteristics, mineralogy of ocher precipitations and heavy metal attenuation in the AMD are discussed based on physicochemical analysis, mineral analysis, sequential extraction experiments and hydrogeochemistry. The AMD chemical characteristics were determined from the initial water composition, water-rock interactions and dissolved sulfide minerals in the mine tailings. The waters, affected and unaffected by AMD, were Ca-SO4 and Ca-HCO3 types, respectively. The affected water had a low pH, high SO42- and high heavy metal content and oxidation as determined by the Fe2+/Fe3+ couple. Heavy metal and SO42- contents of Hengshi River water decreased, while pH increased, downstream. Schwertmannite was the major mineral at the waste dump, while goethite and quartz were dominant at the tailings dam and streambed. Schwertmannite was transformed into goethite at the tailings dam and streambed. The sulfate ions of the secondary minerals changed from bidentate- to monodentate-complexes downstream. Fe-Mn oxide phases of Zn, Cd and Pb in sediments increased downstream. However, organic matter complexes of Cu in sediments increased further away from the tailings. Fe3+ mineral precipitates and transformations controlled the AMD water chemistry.  相似文献   
6.
汪浩  李玲燕 《能源环境保护》2012,26(1):21-25,20
应用PHREEQC软件建立了基于水动力学作用的温岭市太湖水库藻类生长模型。选用2007年度温岭市太湖水库总磷、总氮、水温、叶绿素a的实测值,采用三次样条插值的方法估计出每一天的总磷、总氮、水温、叶绿素a的数值,对模型参数进行了率定和验证。将建立的模型应用于2009年温岭市桐岭水库水华暴发的模拟预测中,结果表明本文所建立的模型进行模拟运算精度较高,可以应用于中小型水库水华暴发的模拟预测方面。  相似文献   
7.
利用日本原子力学研究所于2010年9月提供的最新数据库,以北山的地下水为例,使用地球化学软件PHREEQC进行模拟.结果表明,结晶固体AmCO3OH.0.5H2O的溶解度很低,北山地下水中AmCO3+占主导优势,其次为AmSiO(OH)23+;Am在pH=4.5—5.8的条件下以Am3+和AmSO4+形态为主,在pH=5.8—8.3的条件下以AmCO3+和AmSiO(OH)23+为主,在pH=8.3—9.5的条件下以Am(CO3)2-为主;pH对Am存在形态影响很大,而pE对Am存在形态影响较小.CO2分压越大,水溶液中CO23-的摩尔浓度越低,使得Am(CO3)2-摩尔浓度降低,AmCO3+与Am(CO3)2-摩尔浓度之和也降低,而Am3+、AmHCO23+和AmSO4+的摩尔浓度升高.  相似文献   
8.
采用PHREEQC对Pu在西南某低放废物处置库、甘肃北山高放处置库五一检测井和三号井地下水中的种态及影响进行对比分析,并探讨了pH、pE和离子浓度对Pu在地下水溶液中的影响分布。结果表明:Pu在地下水中主要以Ⅳ价的Pu(OH)_4和Pu(OH)_3~+为主,其次有少量Ⅴ价的PuO_2~+存在。pE和pH对Pu在地下水中的种态存在影响较大,强酸环境中溶液主要以Pu(Ⅲ)存在,中性及碱性环境中,溶液主要以Pu(Ⅳ)存在。离子浓度对Pu在地下水中的种态有一定影响,主要原因是CO_3~(2-)和SO_4~(2-)易与Pu结合形成新的络合物。因此,放射性废物处置库选址与安全评价工作等需要充分考虑周边地下水溶液的离子浓度、pH和pE等影响因素。  相似文献   
9.
以西南某极低放射性废物处置场土壤为研究对象,采用静态吸附和动态吸附实验获取处置场地质特征参数,结合PHREEQC软件和地下水数值模拟系统(GMS)预测U(Ⅵ)在处置场环境中的化学种态和迁移规律。结果表明:U(Ⅵ)在处置场土壤中的吸附平衡时间为20 d,吸附分配系数为358 mL/g;U(Ⅵ)在处置场地下水环境中主要以UO2(CO322-和UO2(CO334-形式存在;处置场关闭后安全运行30 a,处置场中心U(Ⅵ)质量浓度下降4.20%,外围50 m与下游河流边界处U(Ⅵ)质量浓度分别为初始给定值的3.40%和1.32%;在12 a时有0.10%的U(Ⅵ)到达河边。  相似文献   
10.
A borehole in the Callovo–Oxfordian clay rock in ANDRA's underground research facility was sampled during 1 year and chemically analyzed. Diffusion between porewater and the borehole solution resulted in concentration changes which were modeled with PHREEQC's multicomponent diffusion module. In the model, the clay rock's pore space is divided in free porewater (electrically neutral) and diffuse double layer water (devoid of anions). Diffusion is calculated separately for the two domains, and individually for all the solute species while a zero-charge flux is maintained. We explain how the finite difference formulas for radial diffusion can be translated into mixing factors for solutions. Operator splitting is used to calculate advective flow and chemical reactions such as ion exchange and calcite dissolution and precipitation. The ion exchange reaction is formulated in the form of surface complexation, which allows distributing charge over the fixed sites and the diffuse double layer. The charge distribution affects pH when calcite dissolves, and modeling of the experimental data shows that about 7% of the cation exchange capacity resides in the diffuse double layer. The model calculates the observed concentration changes very well and provides an estimate of the pristine porewater composition in the clay rock.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号