首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2548篇
  免费   425篇
  国内免费   642篇
安全科学   182篇
废物处理   22篇
环保管理   156篇
综合类   2370篇
基础理论   244篇
污染及防治   157篇
评价与监测   427篇
社会与环境   38篇
灾害及防治   19篇
  2024年   41篇
  2023年   194篇
  2022年   175篇
  2021年   229篇
  2020年   274篇
  2019年   263篇
  2018年   116篇
  2017年   130篇
  2016年   192篇
  2015年   265篇
  2014年   324篇
  2013年   187篇
  2012年   158篇
  2011年   113篇
  2010年   81篇
  2009年   68篇
  2008年   82篇
  2007年   79篇
  2006年   64篇
  2005年   67篇
  2004年   54篇
  2003年   53篇
  2002年   44篇
  2001年   34篇
  2000年   54篇
  1999年   49篇
  1998年   34篇
  1997年   31篇
  1996年   27篇
  1995年   31篇
  1994年   17篇
  1993年   26篇
  1992年   17篇
  1991年   12篇
  1990年   13篇
  1989年   17篇
排序方式: 共有3615条查询结果,搜索用时 15 毫秒
1.
全(多)氟烷基化合物(per(poly)fluoroalkyl substances,PFASs)在环境各个介质及人体样品中广泛被检出,近年,在室内空气和灰尘中也普遍发现PFASs.研究表明,室内空气中PFASs的含量普遍高于室外空气,室内空气和灰尘中的PFASs可能是室外空气的污染来源及人体暴露源,因此室内环境中PFASs成为环境领域的又一个研究热点.但目前为止,我国还没有开展室内空气中PFASs的相关研究,室内灰尘中PFASs的研究也相对较少.本文就室内空气和灰尘中PFASs的采样与分析方法、污染现状、来源分析及人体暴露等4个方面进行了综合阐述,以期为我国室内环境中PFASs的研究提供参考.  相似文献   
2.
采样点位置的确定是烟尘测试中的一项基础工作。在全国沿用10多年的确定圆形圆形烟道烟尘采样点位置的计算表中的数据,经验算有60%有误;原来以烟道中心为基准的计算公式虽然正确,但实用性差。为了进一步完善烟气测试理论,提高监测质量,提出以烟道内壁为基准的新计算公式。运用新、旧2种计算公式得到一致的计算结果—新计算表,进一步证实了原计算表中的错误。  相似文献   
3.
4.
北京南部城区PM2.5中碳质组分特征   总被引:5,自引:3,他引:2  
为了解《大气污染防治行动计划》实施后北京市大气PM2.5中碳质组分特征,于2017年12月至2018年12月在北京污染较重的南部城区进行了PM2.5连续采样,对其中的有机碳(OC)和元素碳(EC)进行了全面研究.结果表明,北京大气PM2.5、OC和EC浓度变化范围分别为4.2~366.3、0.9~74.5和0.0~5.5 μg ·m-3,平均浓度分别为(77.1±52.1)、(11.2±7.8)和(1.2±0.8)μg ·m-3,碳质组分(OC和EC)整体占PM2.5的16.1%.OC质量浓度季节特征表现为:冬季[(13.8±8.7)μg ·m-3] > 春季[(12.7±9.6)μg ·m-3] > 秋季[(11.8±6.2)μg ·m-3] > 夏季[(6.5±2.1)μg ·m-3],EC四季质量浓度水平均较低,范围为0.8~1.5 μg ·m-3.二次有机碳(SOC)年均质量浓度为(5.4±5.8)μg ·m-3,四季贡献比例范围为45.7%~52.3%,年均贡献为48.2%,凸显了二次形成的重要贡献.随污染加重,尽管OC和EC贡献比例均降低,但浓度水平却成倍升高,OC和EC浓度在严重污染天分别是空气质量为优天的6.3和3.2倍.与非供暖时段相比,供暖时段PM2.5、OC和SOC浓度分别增加了14.4%、47.9%和72.1%,体现了OC对供暖季PM2.5污染的重要贡献.PSCF分析表明,位于北京西南的山西省和河南省部分区域是PM2.5和OC的主要潜在源区,且PM2.5潜在源区更为集中;EC的PSCF高值(>0.7)区域较少,主要位于北京南部,如山东省和河南省部分地区,且北京市及周边地区贡献明显.  相似文献   
5.
华北区域点冬季二次有机气溶胶特征与影响因素   总被引:2,自引:0,他引:2  
为探明二次有机气溶胶(SOA)的污染特征和影响因素,本研究于2018年11月—2019年1月对华北区域点(德州市郊区点)细颗粒物(PM_(2.5))的化学组成进行了在线测量,并分析了PM_(2.5)中有机碳(OC)、元素碳(EC)和水溶性离子组分的污染特征及PM_(2.5)与气象要素之间的相关性.结果表明,观测期间德州PM_(2.5)污染严重,平均质量浓度为(115.6±24.6)μg·m~(-3);其中,有机碳和元素碳是PM_(2.5)的主要成分,平均质量浓度分别为(8.2±5.8)μg·m~(-3)和(2.6±2.2)μg·m~(-3),占PM_(2.5)总质量的7.1%和2.2%;PM_(2.5)与风速呈负相关,与相对湿度呈正相关,与气温的相关性较差,偏北风对PM_(2.5)浓度影响较大.同时,本研究利用EC示踪OC/EC比值法对PM_(2.5)中的二次有机碳(SOC)进行了估算,通过估算得到的SOC结果表明,华北区域点冬季SOC是OC的重要组成部分,平均浓度为(4.0±2.9)μg·m~(-3),占OC的45.7%,SOC在白天占比较高(62.7%),早晚由于有局地生物质燃烧影响,SOC占比降低,约占OC的42.7%.本研究还分析了SOC生成的影响因素,分析了德州市冬季O_3、含水量、酸度与SOC的相关性.结果表明,SOC受臭氧浓度影响,但在白天和夜晚表现出不同的相关关系,可能存在不同的生成机制.最后,利用ISORROPIA模型估算了颗粒物的含水量和酸度,发现SOC在高含水量和低含水量下存在不同的关系,高含水量更能促进SOC生成;在高含水量下SOC与H~+具有显著相关性,但在低含水量下则不相关,表明颗粒物含水量较高、H~+浓度较高情况下液相酸催化反应可能对SOC具有重要贡献.  相似文献   
6.
京津冀大气污染的时空分布与人口暴露   总被引:4,自引:0,他引:4  
经济的快速发展和城市化导致京津冀地区的空气质量不断恶化,已经引起学术界广泛的关注.为了揭示近年来京津冀地区大气污染状况,本研究基于中国空气质量在线监测分析平台发布的PM_(2.5)、PM_(10)、SO_2、CO、NO_2和O_3_8 h_max长期监测数据,采用统计学的方法分析了2014—2018年京津冀13个市这6种污染物的时空变化特征,结合各城市人口数据,评估了在此背景下该地区PM_(2.5)和O_3_8 h_max的人口暴露风险.结果表明:京津冀地区PM_(2.5)、PM_(10)、SO_2、CO和NO_2近年来整体上呈下降趋势,而O_3_8 h_max则呈上升趋势.总体而言,PM_(2.5)、PM_(10)、SO_2、CO和NO_2表现为冬季最高、春秋季次之、夏季最低的特征,而O_3_8 h_max则表现为夏季春季秋季冬季的特点,并在月变化上呈倒"V"型,从1月份开始逐渐上升,在6月份达到峰值,而后又逐渐下降.空间上,PM_(2.5)、PM_(10)、SO_2、CO和NO_2呈现南高北低的分布特征,而O_3_8 h_max在2014—2016年呈现北高南低的分布特征,但在2017—2018年则呈现南高北低的分布特点.此外,京津冀北部地区PM_(2.5)的来源主要是一次气溶胶,而二次气溶胶是中部地区PM_(2.5)的主要来源.除秦皇岛、承德和张家口外,其他城市细粒子在颗粒物中占的比重较大.随着近年来PM_(2.5)浓度的降低,暴露于高浓度的PM_(2.5)中的人口比例逐年减少,但距离年平均浓度限值还相差很远.除2014年外,暴露在O_3浓度超标情况下的人口在2015—2017年逐渐上升.  相似文献   
7.
河流是流域氮磷营养盐的主要输出途径之一,准确掌握其通量变化和驱动因素对流域营养盐管理具有重要意义.本研究以滇池主要入湖河流宝象河为例,基于周水质观测数据和逐日水量数据,构建了河流氮磷通量LOADSET模型.估算了宝象河不同时间尺度(日、季、年)TN和TP的通量,评估了4种低频水质采样和极端气候指数对河流氮磷通量计算的影响.结果表明:①2018年宝象河的TN和TP年通量分别为270.49 t和11.19 t,存在显著的年内差异,夏季是通量最高的季节,分别占TN和TP年通量的40.78%和41.96%.②基于LOADEST模型的低频水质采样的氮磷估算结果与高频采样差异较小,宝象河TN、TP通量估算受采样频率影响较小.③宝象河的TN和TP通量变化受连续5日最大降水量、平均最低气温、平均最高气温、最低气温、最低气温极大值、最高气温极小值和平均温差7种极端气候指数的显著影响.  相似文献   
8.
利用南京与北京地区2014年5月1日—2019年10月31日的PM2.5监测数据、气溶胶光学厚度观测资料以及同期MICAPS地面气象要素的观测资料,对两地PM2.5浓度的变化规律及其与气溶胶光学厚度、气象要素的关系进行了分析和讨论,结果表明:南京与北京均呈现PM2.5浓度冬季显著高于夏季,AOD冬季小于夏季的特征;对比而言,北京PM2.5月均浓度高于南京地区;南京与北京的PM2.5浓度与AOD均为正相关关系,PM2.5浓度与AOD间相关性存在显著的季节差异,主要表现为夏季相关性大于冬季相关性;两地AOD与PM2.5浓度均为正相关关系,在同一AOD水平下,相对湿度越大,PM2.5浓度越大,气溶胶吸湿增长易造成污染物积累;南京PM2.5浓度与能见度的r为0.57,而北京的r为0.83,两地的PM2.5浓度与能见度的冬季相关性较夏季好,在高相对湿度下,同一PM2.5浓度水平时,南京能见度较北京好.  相似文献   
9.
为研究邢台市秋季PM2.5污染特征,于2017年10月15日~11月14日在邢台市区对PM2.5样品进行了采集,并对其中水溶性离子(包括Cl-、NO3-、SO42-、NH4+、Ca2+、Na+、Mg2+、K+)进行了分析.结果显示,观测期间邢台市ρ(PM2.5)平均值为(130.0±74.9)μg/m3,其中水溶性离子质量浓度为(69.8±11.4)μg/m3,占ρ(PM2.5)的53.3%,NO3-、SO42-和NH4+为主要离子,占水溶性离子比例达到了89.7%. 当污染加重,水溶性离子质量浓度随ρ(PM2.5)增大而升高,且NO3-、NH4+及SO42-占比亦逐渐升高,但其他离子占比随之下降,Ca2+尤为明显,表明ρ(PM2.5)升高时主要受二次无机转化影响;观测期间SOR(硫转化率)与NOR(氮转化率)的平均值分别为0.36和0.25,表明秋季SO2与NO2转化速率较强,二次无机污染严重,另外SOR及NOR与温度及相对湿度呈正相关,且SOR对二者更为敏感;邢台市秋季PM2.5呈弱碱性,NH4+主要以(NH42SO4和NH4NO3的形式存在;ρ(NO3-)/ρ(SO42-)平均值为2.13,表明移动源对秋季大气颗粒物的来源贡献较大;PMF分析结果表明,二次转化源、燃烧源及扬尘源为邢台市秋季PM2.5中水溶性离子的主要来源.  相似文献   
10.
为了解2018年春节期间京津冀地区空气污染情况,利用近地面污染物浓度数据、激光雷达组网观测数据,结合WRF气象要素、颗粒物输送通量和HYSPLIT气团轨迹综合分析污染过程.结果表明,春节期间出现3次污染过程.春节前一次污染过程,各站点PM2.5浓度均未超过200μg/m3;除夕夜,廊坊站点PM2.5峰值浓度达到504μg/m3,是清洁天气的26倍;年初二~初五,各站点PM2.5始终高于120μg/m3,且污染主要聚集在500m高度以下,北京地区存在高空传输,800m处最大输送通量达939μg/(m3·s),此次重污染过程为一次典型的区域累积和传输过程.京津冀地区处于严格管控状态时,燃放烟花爆竹期间PM2.5峰值浓度可达无燃放时PM2.5峰值的3.2倍.为防止春节期间重污染现象的发生,需对静稳天气下燃放烟花炮竹采取预防对策.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号