首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
综合类   2篇
基础理论   4篇
  2011年   1篇
  2008年   1篇
  2007年   1篇
  2004年   1篇
  2002年   1篇
  1995年   1篇
排序方式: 共有6条查询结果,搜索用时 78 毫秒
1
1.
In insect parasitoids, offspring fitness is strongly influenced by the adult females choice of host, particularly in ectoparasitoids that attack non-growing host stages. We quantified the fitness consequences of size-dependent host species selection in Dirhinus giffardii, a solitary ectoparasitoid of tephritid fruit fly pupae. We first showed a positive correlation between the size of emerged D. giffardii wasps and the size of their host fruit fly species (in order of decreasing size): Bactrocera latifrons, B. cucurbitae, B. dorsalis or Ceratitis capitata. We then manipulated individual wasps to show that the parasitoid preferred to attack the largest (B. latifrons) to the smallest (C. capitata) host species when provided with a choice, and laid a greater proportion of female eggs in B. latifrons than in C. capitata. There were no differences in developmental time or offspring survival between individuals reared from these two host species. Finally, we compared the foraging efficiency of large versus small wasps (reared from B. latifrons vs C. capitata) under two different laboratory conditions: high versus low host habitat quality, given that realized fecundity in parasitoids may be influenced by either egg-limited or time-limited factors. Under both conditions, large wasps parasitized more hosts than did small ones as a consequence of high searching efficiency in the host-poor habitat, and high capacity for adjusting egg maturation in response to host availability in the host-rich habitat. Considering the flexibility of body growth, the apparent lack of cost of achieving large body size in either development or survival, and the strong dependence of realized reproductive success on a females size, we argue that body size may be a key to understanding evolution of host species selection in ectoparasitoids. We also discuss constraints upon the evolution of size-dependent host species selection in parasitoids.Communicated by D. Gwynne  相似文献   
2.
Adult parasitoid females lay their eggs in or on host insects. Most species are incapable of de novo lipogenesis as adults, and lipids accumulated during the larval stage are allocated either to egg production or to adult survival. Lipid consumption increases with distance covered by the parasitoids and thus with the distance between available hosts within a habitat. Temperature should affect parasitoid fitness because it changes the constraint imposed by a limited reserve of lipids and because it influences behaviour. Climate change involves both an increase in average temperature and an increased frequency of extreme weather such as heat waves. We investigated how the predicted increase of temperature will affect parasitoid fitness and how this depends on habitat parameters (spatial distribution of hosts and lipid cost of habitat exploitation). We studied optimal behaviour and calculated fitness at different temperatures and in different habitats using a stochastic dynamic programming model for pro-ovigenic parasitoids (which mature all their eggs before becoming adult). We show that an increase in temperature decreases fitness of parasitoids adapted to lower temperatures. This decrease in fitness depends on habitat quality. In field conditions (assuming small costs of intra-patch foraging), the loss of fitness should be larger in habitats with high inter-patch distance and in habitats with a more aggregated distribution of hosts. The foraging behaviour of parasitoids is also affected; at higher temperature we show that intra-patch foraging becomes less efficient, and patch residence times are longer.  相似文献   
3.
In 1996–1999, different mortality factors of pollen beetle larvae were investigated in twenty six rape fields in the northern part of Switzerland which had either a wild flower strip or an extensively managed meadow adjacent to the long side of the field. At 3 and 30 m into the crop from the conservation strip, total mortality, mortality from predators, parasitoids and unspecified factors were measured. Total pollen beetle larval mortality was 66–96%. Mortality caused by predators was 16–27% and there was no significant difference between mortality at 3 m and that 30 m from the extensively managed meadows. However, in fields with wild flower strips adjacent to them, the percentage mortality from predators was significantly greater at 30 m than at 3 m. The range of parasitism of pollen beetle larvae was 0–54% and was on average greater at 3 m than at 30 m. In fields with wild flower strips, the percentage parasitism with Tersilochus heterocerus was significantly higher than in fields with extensively managed meadows. However, mortality from all parasitoids was only 1–2% and there was no significant difference between 3 and 30 m. The effect of parasitoids on pollen beetle mortality was masked by the high unspecified mortality and the mortality from predators. The unspecified mortality was 46–72% and was significantly greater in 1998 and 1999 than in 1996 and 1997. These differences are probably because of meteorological factors (wet in 1999 and dry in 1998). The possible influences of the two types of conservation strips on pollen beetle larval density were investigated. The results show that in fields with adjacent wild flower strips, the pollen beetle larvae were more evenly distributed (but not significantly so) than in fields with extensively managed meadows where larval density decreases faster from the edge into the rape field.  相似文献   
4.
The reproductive success of insect parasitoids depends on two activities, searching for hosts to obtain immediate fitness rewards (offspring) and searching for food to extend life span and enhance future reproductive opportunities. Models suggest that to deal with this trade-off and to cope with the variability of the resources they depend on, parasitoids should simultaneously integrate information originating from three distinct sources: host and food availabilities in the environment (environmental information) and the metabolic reserves of the parasitoid (internal information). We tested whether, in the parasitic wasp Venturia canescens, these three types of information are perceived simultaneously and interact during host-patch exploitation. Experiments were performed with strains originating from two different geographical locations and with individuals of the two reproductive modes, arrhenotoky and thelytoky. We hypothesised that there would be differences between modes of reproduction as they thrive in different ecological conditions. Our results show that metabolic state, food availability and the number of ovipositions performed simultaneously modulate patch residence time in V. canescens of both populations and reproductive modes. Unfed wasps left their host patch earlier than fed ones. The tendency to leave the patch increased with an increasing probability of finding food. Our study confirms that globally, each oviposition increases the patch-leaving tendency (decremental mechanism). This effect was modulated by both the metabolic reserves and food availability, and the relationship depended on the geographic origin of populations. Individuals of one of the populations switched from a decremental to an incremental patch-leaving mechanism depending on the presence or absence of food in the vicinity. Differences between reproductive modes in the responses to environmental cues can be explained by the different ecological conditions they live in.  相似文献   
5.
Structurally complex landscapes may enhance local species richness and interactions, which is possibly due to a higher species pool in complex landscapes. This hypothesis was tested using cereal aphid parasitoids (Hymenoptera, Aphidiidae) by comparing 12 winter wheat fields in structurally complex landscapes (>50% semi-natural habitats; n = 6) and structurally simple landscapes dominated by agricultural lands (>80% arable land; n = 6). Surprisingly, landscape structural complexity had no effect on aphid parasitoid species diversity. In complex landscapes 12 and in simple landscapes 11 species were found; 9 species occurred in both landscape types. Hence, arable fields in high-intensity agricultural landscapes with little non-crop area can support a similar diversity of cereal aphid parasitoids as structurally complex landscapes. This finding suggests that cereal aphid parasitoids may find necessary resources even in simple landscapes, making generalisations concerning the relationship between landscape composition and biodiversity in arable fields difficult.  相似文献   
6.
Although there are many examples of the role of volatile infochemicals in interactions between trophic levels of insect communities, surprisingly little is known of volatile interactions between species within the third trophic level. Recently it was found that Leptopilina heterotoma, an endoparasitoid that attacks Drosophila larvae, avoids one type of patches (decaying stinkhorn mushrooms) when parasitoids of another species (L. clavipes) are present on these patches. L. heterotoma is able to smell the presence of L. clavipes from a distance (Fig. 1). In this paper we investigate the source of the odour that induces avoidance behaviour, by varying the host species and parasitoid species present on stinkhorn mushrooms, and by using another type of patch (sap-fluxes of wounded trees). L. heterotoma was found to avoid stinkhorn patches with conspecific as well as heterospecific parasitoids (Fig. 2). Hosts had to be present in the patch to elicit avoidance, but avoidance behaviour was also found with another host species present in the patch (Fig. 3). No avoidance behaviour was found with sap-flux patches with hosts and parasitoids on them (Fig. 4). Avoidance of stinkhorn patches only occurred when the parasitoids present on the patch were able to contact hosts (Figs. 5 and 6). The exact source of the odour that elicits avoidance is still unclear, so that one can only speculate on the function of the signal. However, there is a clear benefit to the receiver, because it is able to avoid superior competitors. Avoidance can lead to non-aggregated parasitoid distributions. The importance of avoidance behaviour for population dynamics and stability of parasitoid-host systems is discussed.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号