首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
  国内免费   4篇
综合类   4篇
污染及防治   1篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2017年   1篇
  2011年   1篇
排序方式: 共有5条查询结果,搜索用时 156 毫秒
1
1.
The ability of thermal activated peroxydisulfate (PS) of mineralizing phenol at 70 °C from contaminated waters is investigated. Phenol in concentrations of 10−4 to 5 × 10−4 M is quantitatively depleted by 5 × 10−3 to 10−2 M activated PS in 15 min of reaction. However, mineralization of the organic carbon is not observed. Instead, an insoluble phenol polymer-type product is formed. A reaction mechanism including the formation of phenoxyl radicals and validated by computer simulations is proposed. High molecular weight phenolic products are formed by phenoxyl radical H-abstraction reactions. This is not the case for the room temperature degradation of phenol by sulfate radicals where sulfate addition to the aromatic ring mainly leads to the generation of hydroxycyclohexadienyl radicals leading to hydroxybenzenes and oxidized open chain products. Therefore, a change in the reaction mechanism is observed with increasing temperature, and thermal activation of PS at 70 °C does not lead to the mineralization of phenol. Thus PS activation at 70 °C may be considered a potential method to reduce the load of phenol in polluted waters by polymerization.  相似文献   
2.
Citrate (Ct) was chosen as a typical chelator used in the Fe2+-peroxydisulfate (PDS) process to improve sludge dewaterability.The PDS-Fe2+-Ct process exhibited better performance in sludge dewatering than PDS-Fe2+.Specifically,with a PDS dosage of 1.2 mmol/g VS,the molar ratio of PDS/Fe2+and Ct/Fe2+were 4:5 and 1:4,respectively,the capillary suction time decreased from 155.8 to 24.8sec,and the sludge cake water content decreased from 82.62%t...  相似文献   
3.
In this study, a graphitic carbon nitride(g-C3N4) based ternary catalyst Cu O/Cu Fe2O4/gC3N4(CCCN) is successfully prepared thorough calcination method. After confirming the structure and composition of CCCN, the as-synthesized composites are utilized to activate persulfate(PS) for the degradation of organic contaminant. While using tetracycline hydrochloride(TC) as pollutant surrogate, the effects of initial p H, PS and catalyst ...  相似文献   
4.
Manganese ferrite nanopowder was prepared by thermal decomposition at 400°C of the gel synthesized from manganese and iron nitrates and polyvinyl alcohol. X-ray diffractometry evidenced that manganese ferrite was formed as single crystalline phase at this temperature. Scanning electron microscope images evidenced the formation of very fine spherical particles(d 11 nm) of manganese ferrite, with specific surface area of 147 m~2/g.The powder obtained at 400°C was used as a catalyst for the oxidative degradation of phenol in aqueous solutions, in the presence of potassium peroxydisulfate as oxidant. High phenol removal efficiencies above 90% were reached at: pH 3–3.5, phenol initial concentration around 50 mg/L, peroxydisulfate:phenol mass ratio 10:1, and catalyst dose 3 g/L. Total organic carbon measurements showed that the degradation of phenol goes, under these conditions, to mineralization in an extent of 60%.  相似文献   
5.
A series of Sr-doped BiFeO3 perovskites (Bi1-xSrxFeO3, BSFO) fabricated via sol-gel method was applied as peroxydisulfate (PDS) activator for ciprofloxacin (CIP) degradation. Various technologies were used to characterize the morphology and physicochemical features of prepared BSFO samples and the results indicated that Sr was successfully inserted into the perovskites lattice. The catalytic performance of BiFeO3 was significantly boosted by strontium doping. Specifically, Bi0.9Sr0.1FeO3 (0.1BSFO) exhibited the highest catalytic performance for PDS activation to remove CIP, where 95% of CIP (10 mg/L) could be degraded with the addition of 1 g/L 0.1BSFO and 1 mmol/L PDS within 60 min. Moreover, 0.1BSFO displayed high reusability and stability with lower metal leaching. Weak acidic condition was preferred to neutral and alkaline conditions in 0.1BSFO/PDS system. The boosted catalytic performance can be interpreted as the lower oxidation state of Fe and the existence of affluent oxygen vacancies generated by Sr doping, that induced the formation of singlet oxygen (1O2) which was confirmed as the dominant reactive species by radical scavenging studies and electron spin resonance (ESR) tests. The catalytic oxidation mechanism related to major 1O2 and minor free radicals was proposed. Current study opens a new avenue to develop effective A-site modified perovskite and expands their application for PDS activation in wastewater remediation.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号