首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
  国内免费   1篇
安全科学   3篇
综合类   3篇
基础理论   1篇
污染及防治   2篇
  2021年   1篇
  2013年   2篇
  2011年   1篇
  2009年   1篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2002年   1篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
聚合岗位是石油化工厂聚丙烯车间重要且非常危险的岗位,一旦发生意外事故,将会导致人员的重大伤亡和巨大的经济损失。笔者依据聚丙烯车间生产现状,详细地介绍了12m3 釜聚合岗位工艺流程,用“系统安全”的理论和方法对其主要物质、生产工艺、操作过程的危险性进行了辨识,且绘制了主要危险点分布图;通过危险源辨识可知,聚合釜具有的超温、超压特点是该岗位众多危险源中最为严重的潜在危险,应用“事故树法”对聚合釜超温、超压爆炸事故进行了危险分析,找出其爆炸潜在的危险因素有2 4种,该事故树的最小割集共有6 6个,表明聚合釜爆炸可能性是很大的。依据分析结果,针对聚合釜爆炸可能性最大的危险因素,提出了安全对策与措施,以避免或减少爆炸事故的发生  相似文献   
2.
利用煤矿开采后产生的固体废弃物煤矸石制备一种新复合型絮凝剂聚合氯化铝铁钙(PAFCC)。制备工艺中溶出反应最优化条件为煅烧温度750℃,保温2h;盐酸的酸溶反应时间为3h,酸溶反应中盐酸的用量为0.70g/g;碱化聚合反应的最佳工艺条件:反应温度为60℃,pH值为3.7,反应时间为30min;以高岭土废水水样为处理对象,煤矸石制备的聚合氯化铝铁钙絮凝剂废水浊度去除率高于工业聚合氯化铝PAC的浊度去除率。  相似文献   
3.
Liu H  Zhao H  Quan X  Zhang Y  Chen S  Zhao H 《Chemosphere》2011,84(4):512-518
Hydroxylated polybrominated diphenyl ethers (HO-PBDEs) have received significant attention due to their toxicities and universal presence in the environmental matrices. However, their origins are not fully understood. We explored the feasibility of the generation of HO-PBDEs through photochemical processes from bromophenol, a commonly detected pollutant with anthropogenic source in freshwater and natural source in the marine environment. The results showed that when 2,4-dibromophenol (2,4-diBP) was irradiated in aquatic solutions under simulated sunlight, significant amounts of 2′-hydroxy-2,3′,4,5′-tetrabromodipheyl ether (2′-HO-BDE68) were rapidly formed as the dimeric product of 2,4-diBP. The formation of 2′-HO-BDE68 intensified with the increase of light intensity and with the initial concentration increase of 2,4-diBP, whereas it weakened with an increase in pH. Moreover, Fe(III) and fulvic acid played important roles in the formation of 2′-HO-BDE68. This study provides important insight into a possible source of HO-PBDEs from bromophenols in natural aquatic systems through photochemical approaches.  相似文献   
4.
Hexachlorobenzene (HCB) in the milligram range was co-heated with calcium oxide (CaO) powder in sealed glass ampoules at 340–400 °C. The heated samples were characterized and analyzed by Raman spectroscopy, elemental analysis, gas chromatography/mass spectrometry, ion chromatography, and thermal/optical carbon analysis. The degradation products of HCB were studied at different temperatures and heated times. The amorphous carbon was firstly quantitatively evaluated and was thought to be important fate of the C element of HCB. The yield of amorphous carbon in products increased with heating time, for samples treated for 8 h at 340, 380 °C and 400 °C, the value were 17.5%, 34.8% and 50.2%, respectively. After identification of the dechlorination products, the HCB degradation on CaO at 340–400 °C was supposed to through dechlorination/polymerization pathway, which is induced by electron transfer, generate chloride ions and form high-molecular weight intermediates with significant levels of both hydrogen and chlorine, and finally form amorphous carbon. Higher temperature was beneficial for the dechlorination/polymerization efficiency. The results are helpful for clarifying the reaction mechanism for thermal degradation of chlorinated aromatics in alkaline matrices.  相似文献   
5.
Thermal hazard in a batch process involving hydrogen peroxide   总被引:1,自引:0,他引:1  
Hydrogen peroxide is a versatile and interesting reagent for many industrial processes; nevertheless, it is very sensitive to impurities that can catalyze its decomposition, so that the desired reaction could be accompanied by undesired parallel and consecutive reactions. As an example, the butadiene free radical polymerization with hydrogen peroxide in the presence of an organic solvent was studied. Batch polymerization occurs in the liquid phase at about 120 °C. Because of the involved reactive compounds and the relatively high temperature, this is an intrinsically dangerous reaction. Therefore calorimetric data can give important information about safety and process optimization during the scale-up. The aim of this research project was to study the influence of impurities on the overall heat of reaction. The experiments were made in a high-pressure reaction calorimeter. The study has revealed that impurities do indeed affect the reaction course. Most importantly, the presence of carboxylic acids and/or ionic iron must be avoided and the recycle of unreacted reagents must be carefully controlled to minimize the build-up of these impurities.  相似文献   
6.
The most critical aspect of polymerization reactors is the agitator's stop and becomes more serious when this occurs exactly at the removal of the heat load, which is generated by the reaction (exothermic). This phenomenon is typical in power-failure situations of the energy supply or because of other related problems at the plant. The objective of this work is to compare the performance of two configurations for the inhibition-injection system for vinyl chloride monomer (VCM) polymerization reactors. To determine the injection time a rigorous mathematical model was developed. From the results of this work one of the configurations was implemented in an industrial plant.  相似文献   
7.
通过正交实验对丙烯酸改性破乳剂的聚合工艺条件进行研究。针对辽河油田锦采原油为研究对象,以原油破乳剂的相对脱水率为评价标准,确定了最佳的丙烯酸改性破乳剂的聚合工艺条件,最佳工艺条件是:引发剂量:3.5Wt%;聚合温度90—95℃:老化时间1.5h:滴加时间2.5h:调节剂用量:1.9Wt%。新研制破乳剂脱水性能优于市售原油破乳剂。  相似文献   
8.
The reaction mechanism and kinetics of the simplest Criegee intermediate CH2OO reaction with hydroperoxymethyl formate (HPMF) was investigated at high-level quantum chemistry calculations. HPMF has two reactive functional groups, -C(O)OH and -OOH. The calculated results of thermodynamic data and rate constants indicated that the insertion reactions of CH2OO with –OOH group of HPMF were more favorable than the reactions of CH2OO with -C(O)OH group. The calculated overall rate constant was 2.33 × 10?13 cm3/(molecule?sec) at 298 K and the rate constants decreased as the temperature increased from 200 to 480 K. In addition, we also proved the polymerization reaction mechanism between CH2OO and -OOH of HPMF. This theoretical study interpreted the previous experimental results, and supplied the structures of the intermediate products that couldn't be detected during the experiment.  相似文献   
9.
Some organic compounds are major water pollutants. They can be toxic or carcinogenic even at low concentrations. Current technologies, however, fail to remove these contaminants to parts per billion (ppb) levels. Here we report on the removal of organic pollutants from water using cross-linked nanoporous polymers that have been copolymerized with previously functionalized carbon nanotubes. These novel polymers can remove model organic species such as p-nitrophenol by as much as 99% from a 10 mg/L spiked water sample compared to granular activated carbon and native cyclodextrin polymer that removed only 47 and 58%, respectively. These polymers have also demonstrated the ability to remove trichloroethylene (10 mg/L spiked sample) to non-detectable levels (detection limit <0.01 ppb) compared to 55 and 70% for activated carbon and native cyclodextrin polymers, respectively.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号